Direct sum decomposition of $\overline{\emph{\textbf{U}}}_{{\bm r},{\bm s}}\textbf{(}{\bm s}{\bm l}_{\bf 2}\textbf{)}$ about principal indecomposable modules
TONG Zhao-jia, HU Nai-hong
Department of Mathematics, East China Normal University, Shanghai 200241, China
TONG Zhao-jia, HU Nai-hong. Direct sum decomposition of $\overline{\emph{\textbf{U}}}_{{\bm r},{\bm s}}\textbf{(}{\bm s}{\bm l}_{\bf 2}\textbf{)}$ about principal indecomposable modules[J]. Journal of East China Normal University(Natural Sc, 2012, 2012(3): 71-84,96.
{1}JANTZEN J C. Lectures on Quantum Groups[M]. Graduate Studies inMath 6. Providence: Amer Math Soc, 1996.{2}KASSEL C. Quantum Groups[M]. Graduate Text in Mathmatics, 155, NewYork: Springer-Verlag, 1995.{3}CONCINI D E, KAC V G. Representations of Quantum Groups at root of 1[C]// CONNES A. Operator Algebras, Unitary Representation,Enveloping Algebras, and Invariant Theory(Colloque Dixmier), ProcParis 1989: Progress in Mathmatics 92. 1990: 471-506.{4}BERGERON N, GAO Y, HU N. Drinfel'd doubles and Lusztig's symmetricof two-parameter quantum groups[J]. J Algebra, 2006, 301: 378-405.{5}BENKART G, WITHERSPOON S. Representations of two-parameter quanrumgroups and Schur-Weyl duality[C]// Hopf algebras: Lecture Notes inPure and Appl Math 237, New York: Dekker. 2004: 62-92.{6}HU N, SHI Q. The two-parameter quantum group of exceptional type$G_2$ and Lusztig symmetries[J]. Pacific J Math, 2007, 230(2):327-346.{7}BAI X, HU N. Two-parameter quantum group of exceptional typeE-series ans conves PBW type basis[J]. Algebra Colloq, 2008, 15(4):619-636.{8}BENKART G, WITHERSPOON S. Restricted two-parameter quantum groups[C]// Fields Institute Communications. Representations of FiniteDimensional Algebras and Related Topics in Lie Theory and GeometryProvidence: Amer Math Soc, 2004, 40: 293-318.{9}HU N, WANG X. Conves PBW-type Lyondon basis and restrictedtwo-parameter quantum groups of type B[J]. J Geom Phys, 2010, 60(3):430-453.{10}HU N, WANG X. Conves PBW-type Lyondon basis and restrictedtwo-parameter quantum groups of type $G_2$[J]. Pacific J Math, 2009,241(2): 243-273.{11}陈茹. 限制的\,$C$\,型双参数量子群[D]. 上海: 华东师范大学, 2008.{12}白晓棠. 双参数~$E$~型量子群和限制~$D$~双参数量子群[D].~上海:~华东师范大学,~2006.{13}XIAO J. Finite dimensional representationas of~$\overline{U}_{t}(sl_2)$~at root of unity[J].~Can J Math,1997,~49:~772-787.{14}CHARI V, PREMET A. Indecomposable restricted representations ofquantum $sl_2$[J].~Publ RIMS Kyoto Univ,~1994,~30:~335-352.{15}ARIKE Y. A construction of symmetric linear functions of therestricted quantum group $\overline{U}_{q}(sl_2)$[J].~Osaka JMath,~2010, 47(2): 535-557.{16}ABE E. Hopf Albgebras[M]. Cambridge:~Cambridge UniversityPress,~1990.{17}德洛兹锝,~基里钦柯,~有限维代数[M].~刘绍学,~张英伯译, 北京:~北京师范大学出版社,~1984.