GONG He-lin. Some sharp lower bounds for spectral radius of connected graphs[J]. Journal of East China Normal University(Natural Sc, 2012, 2012(4): 18-26.
{1} YU A M, LU M, TIAN F. On the spectral radius of graphs[J]. Linear Algebra Appl, 2004, 387: 41-49. {2} NIKIFOROV V. Walks and the spectral radius of graphs[J]. Linear Algebra Appl, 2006, 418: 257-268. {3} HORN R A, JOHNSON C R. Matrix Analysis[M]. Cambridge: Cambridge University Press, 1985. {4} CVETKOVJ\'{C} D, DOOB M, SACHS H. Spectra of Graphs-Theory and Application[M]. New York: Academic Press, 1980. {5} HONG Y. Bounds of eigenvalues of graphs[J]. Discrete Math, 1993, 123: 65-74. {6} DAS K, KUMAR P. Some new bounds on the spectral radius of graphs[J]. Discrete Math, 2004, 281: 149-161. {7} HOFMEISTER M. Spectral radius and degree sequence[J]. Math Nachr, 1988, 139: 37-44. {8} HONG Y, ZHANG X D. Sharp upper and lower bounds for the Laplacian matrices of trees[J]. Discrete Math, 2005, 296: 187-197. {9} HU S B. A sharp lower bound of the spectral radius of simple graphs[J]. Anal Discrete Math, 2009, 3: 379-385. {10} SHI L S. Bounds on the (Laplacian) spectral radius of graphs[J]. Linear Algebra Appl, 2007, 422: 755-770. {11} YU A M. A new upper bound for the laplacian spectral radius of a graph[J]. Electronic Journal of Linear Algebra, 2010, 20: 730-738.