Energy decay estimation for the nonlinear viscoelastic equation with nonlinear second-order boundary damping
LU Jun 1, ZHANG Hong-wei 2
1. Department of Mathematics, Zhengzhou Normal University, Zhengzhou 450044, China; 2. Department of Mathematics, Henan University of Technology, Zhengzhou 450001, China
LU Jun, ZHANG Hong-wei. Energy decay estimation for the nonlinear viscoelastic equation with nonlinear second-order boundary damping[J]. Journal of East China Normal University(Natural Sc, 2012, 2012(5): 63-68.
{1} ANDREWS K T, KUTTLER K L, SHILLOR M. Second orderevolution equations with dynamic boundary conditions[J]. Journal ofMathematical Analysis and Applications, 1996, 197: 781-795.{2} KUTTLER K L. Velocity dependent boundaryconditions for the displacement in one dimensional viscoelasticmaterial[J]. Rocky Mountain J Math, 1994, 24: 579-613.{3} LEE H P. Vibration of an axially moving beamwith a tip mass[J]. Mech Res Comm, 1993, 20: 391-397.{4} COUSIN A T, FROTA C L, LAR'KIN N A. Regularsolutions and energy decay for the equations of viscoelasticity withnonlinear damping on the boundary[J]. Journal of MathematicalAnalysis and Applications, 1998, 224: 273-276.{5} LARKIN N A, NOVIKOV V A, YANENKO N N.Nonlnear Equations of Variable Type[M]. Norosibirsk: Nauka, 1983.{6} GREENBERG G M, LI T T. The effect ofboundary damping for the wave equation[J]. J Differential Equations,1984, 52: 66-75.{7} 呼青英, 张宏伟. 混合Cable-Mass动力系统的一致稳定性[J]. 动力与控制学报, 2007, (5): 27-29.{8} HU Q Y, ZHU C K, ZHANG X Z. Energy decayestimates for an Euller-Bernoulli beam with a tip mass[J]. Ann DiffEqs, 2009, 25(2): 161-164.{9} PELLICER M. Large time dynamics of anonlinear spring-mass-damper model[J]. Nonlinear Analysis, 2008, 69:3110-3127.{10} LITTMAN W, MARKUS L. Stabilization ofa hybrid system of elasticity by feedback boundary damping[J]. AnnMat Pura Appl, 1988, 152: 281-330.{11} AUTUORI G, PUCCI P. Kirchhoff systemswith dynamic boundary conditions[J]. Nonlinear Analysis, 2010, 73:1952-1965.{12} GERBI S, SAID-HOUARI B. Local existenceand exponential growth for a semilinear damped wave equation withdynamic boundary conditions[J]. Advances in Differential Equations,2008, 13(11): 1051-1074.{13} GERBI S, SAID-HOUARI B. Asymptotic stability and blow up for asemilinear damped wave equation with dynamic boundary conditions[J].Nonlinear Analysis, 2011, 74: 7137-7150.{14} MASLOV V P, MOSOLOV P P. Nonilinear Wave Equation Perturbedby Viscousterms[M]. Berlin: Walter de Gruyter, 2000.{15} DORONIN G G, LAR'KIN N A. SOUZA A J. Ahyperbolic problem with nonlinear second order boundary damping[J].Electronic J Diff Equations, (28): 1-10.{16} DORONIN G G, LAR'KIN N A. Global solvability for the quasilinear dampedwave equation with nonlinear second order boundary condition[J].Nonlinear Analysis, 2002, 50: 1119-1134.{17} NAKAO M. Energy decay for the quasilinear wave equation with viscosity[J].Math Zeitscher, 1995, 219: 289-299.{18} LIONS J-L. MAGENES E. Problemes aux Limites NonHomogenes et Applications[M]. Paris: Dunod, 1968.