[1]张晓建, 杨甲山. 时间模上二阶非线性动态方程振荡性的新结果~[J].浙江大学学报: 理学版, 2014, 41(5): 499-505.[2]BOHNER M, PETERSON A. Dynamic Equations on Time Scales, AnIntroduction with Applications [M]. Boston: Birkhauser, 2001.[3]AGARWAL R P, BOHNER M, GRACE S R, et al. Discrete Oscillation Theory[M]. New York: Hindawi Publishing Corporation, 2005.[4]ZHANG Q X, GAO L. Oscillation criteria for second-order half-lineardelay dynamic equations with damping on time scales [J]. Sci SinMath, 2010, 40(7): 673-682.[5]SAHINER Y. Oscillation of second order delay differential equationson time scales [J]. Nonlinear Analysis, TMA, 2005, 63: e1073-e1080.[6]HAN Z L, SHI B, SUN S R. Oscillation of second-order delay dynamicequation on time scales [J]. Acta Scientiarum NaturaliumUniversitatis Sunyatseni, 2007, 46(6): 10-13.[7]SUN S, HAN Z, ZHANG C. Oscillation of second order delay dynamicequations on time scales [J]. J Appl Math Comput, 2009, 30: 459-468.[8]GRACE S R, AGARWAL R P, KAYMAKCALAN B, et al. Oscillation theoremsfor second order nonlinear dynamic equations [J]. J Appl MathComput, 2010, 32: 205-218.[9]AGARWAL R P, O'REGAN D, SSKER S H. Oscillation criteria forsecond-order nonlinear neutral delay dynamic equations [J]. J MathAnal Appl, 2004, 300: 203-217.[10]SAKER S H. Oscillation of second-order nonlinear neutral delaydynamic equations on time scales [J]. J Comput Appl Math, 2006, 187:123-141.[11]SAHINER Y. Oscillation of second-order neutral delay and mixed-typedynamic equations on time scales [J]. Advances in DifferentEquations, 2006, 1-9.[12]SAKER S H, AGARWAL R P, O'REGAN D. Oscillation results forsecond-order nonlinear neutral delay dynamic equations on time scales [J]. Applicable Analysis, 2007, 86: 1-17.[13]WU H W, ZHUANG R K, MATHSEN R M. Oscillation criteria forsecond-order nonlinear neutral variable delay dynamic equations [J].Appl Math Comput, 2006, 178: 321-331.[14]SAKER S H, O'REGAN D. New oscillation criteria for second-orderneutral function dynamic equation via the generalized Riccati substitution [J]. Commun Nonlinear Sci Numer Simulat, 2010, 16:423-434.[15]SAKER S H. Oscillation of second-order neutral delay dynamic equations of Emden-Fowler type [J]. Dyn Sys Appl, 2006, 15: 629-644.[16]韩振来, 孙书荣, 张承慧.时间尺度上二阶中立型时滞动力方程的振动性~[J]. 中山大学学报:自然科学版, 2010, 49(5): 21-24.[17]杨甲山. 时标上一类具阻尼项的二阶动态方程的振荡性~[J].系统科学与数学, 2014, 34(6): 734-751.[18]孙一冰, 韩振来, 李同兴. 二阶拟线性中立型动力方程振动准则~[J].济南大学学报: 自然科学版, 2010, 24(3): 308-311.[19]杨甲山. 时间测度链上具非线性中立项的二阶阻尼动力方程的振动性~[J].浙江大学学报: 理学版, 2012, 39(3): 261-265.[20]杨甲山. 时间测度链上二阶动力方程的振动准则~[J]. 华东师范大学学报:自然科学版, 2012, (3): 17-23.[21]张全信, 高丽, 刘守华.时间尺度上具阻尼项的二阶半线性时滞动力方程的振动准则\,(Ⅱ)~[J].中国科学: 数学, 2011, 41(10): 885-896.[22]杨甲山, 莫协强. 时间轴上一类二阶动态系统振荡的充分条件~[J].安徽大学学报: 自然科学版, 2014, 38(5): 1-6.[23]李同兴, 韩振来. 时间尺度上二阶超线性动力方程振动性~[J].济南大学学报: 自然科学版, 2010, 24(2): 209-211.[24]HAN Z L, LI T X, SUN S R, et al. Oscillation for second-ordernonlinear delay dynamic equations on time scales [J]. Advances in Difference Equations, 2009, 1-13.[25]HAN Z L, LI T X, SUN S R, et al. On the oscillation of second-order neutral delay dynamic equations on time scales [J]. African Diaspora Journal of Mathematics, 2010, 9(1): 76-86.[26]ZHANG C H, AGARWAL R P, BOHNER M, et al. New oscillation results for second-order neutral delay dynamic equations [J]. Advances in Difference Equations, 2012, 227-240.[27]HAN Z L, LI T X, SUN S R, et al. Remarks on the paper [Appl. Math.Comput. 207 (2009) 388-396] [J]. Applied Mathematics and Computation, 2010, 215: 3998-4007.[28]HAN Z L, LI T X, SUN S R, et al. On the oscillation of second-order neutral delay differential equations [J]. Advances in Difference Equations, 2010, 1-8.[29]杨甲山, 苏芳. 时间测度链上一类二阶动力方程的振动性~[J].数学的实践与认识, 2014, 44(13): 265-270.[30]杨甲山, 苏芳.具阻尼项的一类二阶非线性动态方程的振动准则\,(英文)~[J]. 应用数学,2014, 27(2): 392-404.[31]杨甲山. 时间测度链上具正负系数的二阶阻尼动力方程的振动准则~[J].数学物理学报, 2014, 34A(2): 393-408.[32]张晓建, 杨甲山. 时标上三阶时滞动力方程的振动性和渐近性~[J].华东师范大学学报: 自然科学版, 2014, (3): 51-59. |