MA Lu-Yi. Ambrosetti-Prodi type results of the nonlinear first-order periodic problem[J]. Journal of East China Normal University(Natural Sc, 2015, 2015(6): 53-58.
[1]AMBROSETTI A, PRODI G. On the inversion of some differentiable mappings with singularities between Banach spaces [J]. Ann Mat Pura Appl, 1972, 93: 231-24[2]FABRY C, MAWHIN J, NKASHAMA M N. A multiplicity result for periodic solutoins of forced nonlinear second order ordinary differental equations [J]. Bull London Math Soc, 1986, 18: 173-180.[3]RACHUNKOVA I. Multiplicity results for four-point boundary value problems [J]. Nonlinear Anal, 1992, 18: 497-505.[4]BEREANU C, MAWHIN J. Existence and multiplicity results for periodic solutions of nonlinear difference equations [J]. J Difference Equ Appl, 2006, 12: 677-695.[5]BEREANU C, MAWHIN J. Existence and multiplicity results for some nonlinear problems with singular phi-Laplacian [J]. J Differential Equations, 2007, 243(2): 536-557.[6]WANG H Y. Positive periodic solutions of functional differentialequations [J]. J Differential Equations, 2004, 202: 354-366.[7]GRAEF J R, KONG L J. Existence of multiple periodic solutions for first order functional differential equations [J]. Math Comput Modelling, 2011, 54: 2962-2968.[8]GRAEF J R, KONG L J. Periodic solutions of first order functionaldifferential equations [J]. Appl Math Lett, 2011, 24: 1981-1985.[9]BAI D Y, XU Y T. Periodic solutions of first order functionaldifferential equations with periodic deviations [J]. Comput Math Appl, 2007, 53: 1361-1366.[10]KANG S G, SHI B, WANG G Q. Existence of maximal and minimal periodicsolutions for first-order functional differential equations [J].Appl Math Lett, 2010, 23: 22-25.