[1]莫嘉琪. 关于非线性方程$\varepsilony''=f(x,y,y',\varepsilon)$奇异摄动边值问题解的估计~[J]. 数学年刊,1984, 5A (1): 73-77.[2] MO J Q. Generalized solution of singularly perturbed problems for nonlinear reaction diffusion equation [J]. Journal of Anhui Normal University(Natural Science), 2014, 2: 103-107.[3] 杜增吉, 莫嘉琪: 一类扰动发展方程近似解~[J]. 物理学报, 2012, 61(15):155202.[4] 周明儒, 杜增吉, 王广瓦. 奇异摄动中的微分不等式理论~[M]. 北京:科学出版社, 2012.[5] 倪明康, 林武忠. 奇异摄动问题中的渐近理论~[M]. 北京: 高等教育出版社,2009.[6] MIKHAILOV M, \"{OZISIK M. Unified Analysis and Solution of Heat and Mass Diffusion[M]. New York: Dover, 1994.[7] DE FALCO C, O'RIORDAN E. Interior layers in a reaction-diffusion equation with a discontinuous diffusion coefficient [J]. Int J Numer Anal Model, 2010, 7: 444-461.[8] XIE F. An interface problem with singular perturbation on a subinterval [J]. Boundary Value Problems, 2014, 2014: 201.[9] 丁云海, 倪明康. 具有不连续源的弱非线性奇异摄动边值问题~[J].山东大学学报, 2012, 47(2): 8-13.[10] LIN H X, XIE F. Singularly perturbed second order semilinear boundary value problems with interface conditions [J]. Boundary Value Problems, 2015, 2015: 47.[11] KELLY W G, PETERSON A C. The Theory of Differential Equations [M].New York: Springer-Verlag, 2010. |