[1] MEERSCHAERT M M, SCHEFFLER H P. Limit theorems for continuous-time random walks with infinite mean waiting times[J]. Journal of Applied Probability, 2004, 41:623-638.
[2] MEERSCHAERT M M, SCHEFFLER H P. Erratum to "Triangular array limits for continuous time random waiks"[J]. Stochastic Processes and Their Applications, 2010, 120:2520-2521.
[3] BECKER-KERN P, MEERSCHAERT M M, SCHEFFLER H P. Limit theorem for coupled continuous time random walks[J]. The Annals of Probability, 2004, 32:730-756.
[4] JURLEWICZ A, KREN P, MEERSCHAERT M M, et al. Fractional governing equations for coupled continuous time random walks[J]. Computers and Mathematics with Applications, 2012, 64:3021-3036.
[5] BAEUMRER B, MEERSCHAERT M M, MORTENSEN J. Space-time fractional derivative operators[J]. Proceedings of The American Mathematical Society, 2002, 133:2273-2282.
[6] LIU J, BAO J D. Continuous time random walk with jump length correlated with waiting time[J]. Physica A, 2013, 392:612-617.
[7] SHI L, YU Z G, MAO Z, et al. Space-time fractional diffusion equations and asymptotic behaviors of a continuous time random walk model[J]. Physica A, 2013, 392:5801-5807.
[8] MEERSCHAERT M M, SCALAS E. Coupled continuous time random walks in finance[J]. Physica A, 2006, 370:114-118.
[9] MADAN D B, CARR P P, CHANG E C. The variance gamma process and option pricing[J]. European Finance Review, 1998, 2:79-105.
[10] BRODY D C, HUGHSTON L P, MACKIE E. General theory of geometric Lévy models for dynamic asset pricing[J]. Proceedings of The Royal Society A, 2012, 468:1778-1798.
[11] MEERSCHAERT M M, SCHEFFLER H P. Triangular array limits for continuous time random walks[J]. Stochastic Processes and Their Applications, 2008, 118:1606-1633.
[12] ZHANG Y X, GU H, LIANG J R. Fokker-Planck type equations associated with subordinated processes controlled by tempered α-stable processes[J]. Journal of Statistical Physics, 2013, 152(4):742-752.
[13] GAJDA J, A. WYLOMANSKA A. Anomalous diffusion models:Different types of subordinator distribution[J]. Acta Physica Polonica B, 2012, 43:1001.
[14] PODLUBNY I, Fractional Differential Equations[M]. New York:Academic Press, 1999. |