[1] BEN-AMEUR H, BRETON M, FRANCOIS P. A dynamic programming approach to price installment options[J]. European Journal of Operational Research, 2006, 169(2):667-676.
[2] DAVIS M, SCHACHERMAYER W, TOMPKINS R. Pricing, no-arbitrage bounds and robust hedging of installment options[J]. Quantitative Finance, 2001(1):597-610.
[3] DAVIS M, SCHACHERMAYER W, TOMPKINS R. Installment options and static hedging[J]. Journal of Risk Finance, 2002(3):46-52.
[4] ALOBAIDI G, MALLIERAND R, DEAKIN S. Laplace transforms and installment options[J]. Mathematical Models and Methods in Applied Sciences, 2004, 14(8):1167-1189.
[5] CIURLIA P, ROKO I. Valuation of American continuous-installment options[J]. Computational Economics, 2005, 25(1):143-165.
[6] YANG Z, YI F H. Valuation of the European installment put options:Variational inequality approach[J]. Communications in Contemporary Mathematics, 2009, 11(2):279-307.
[7] YANG Z, YI F H. A variational inequality arising from American installment call options pricing[J]. Journal of Mathematical Analysis and Applications, 2009, 357(1):54-68.
[8] CHEN X F, CHADAM J. A mathematical analysis for the optimal exercise boundary of American put option[J]. Siam Journal on Mathematical Analysis, 2007, 38:1613-1614.
[9] JIANG L S. Mathematical Modeling and Methods of Option Pricing[M]. New Jersey:World Scientific, 2005.
[10] KIM J. The analytic valuation of American options[J]. Review of Financial Studies, 1990, 3(4):542-572.
[11] KUSKE A, KELLER B. Optimal exercise boundary for an American put option[J]. Applied Mathematical Finance, 1998, 5(2):107-116.
[12] FRIEDMAN A. Parabolic variational inequalities in one space dimension and smoothness of the free boundary[J]. Journal of Functional Analysis, 1975, 18(2):151-176. |