[1] RANSON H, LISSENDEN N. Insecticide resistance in African anopheles mosquitoes:A worsening situation that needs urgent action to maintain malaria control[J]. Trends in Parasitology, 2016, 32(3):187-196. [2] RANSON H, N'GUESSAN R, LINES J, et al. Pyrethroid resistance in African anopheline mosquitoes:What are the implications for malaria control?[J]. Trends in Parasitology, 2011, 27(2):91-98. [3] MUEMA J M, BARGUL J L, NJERU S N, et al. Prospects for malaria control through manipulation of mosquito larval habitats and olfactory-mediated behavioural responses using plant-derived compounds[J]. Parasites & Vectors, 2017(10):184. [4] RUSSELL T L, GOVELLA N J, AZIZI S, et al. Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania[J]. Malaria Journal, 2011(10):80. [5] NEAFSEY D E, WATERHOUSE R M, ABAI M R, et al. Highly evolvable malaria vectors:Thegenomes of 16Anophelesmosquitoes[J]. Science, 2015, 347(6217):1258522. [6] RUSSELL T L, BEEBE N W, COOPER R D, et al. Successful malaria elimination strategies require interventions that target changing vector behaviours[J]. Malaria Journal, 2013(12):56. [7] NAVARRO-SILVA M A, MARQUES F A, DUQUE L J E. Review of semiochemicals that mediate the oviposition of mosquitoes:A possible sustainable tool for the control and monitoring of Culicidae[J]. Revista Brasileira de Entomologia, 2009, 53(1):1-6. [8] MOLLER-JACOBS L L, MURDOCK C C, THOMAS M B. Capacity of mosquitoes to transmit malaria depends on larval environment[J]. Parasites & Vectors, 2014(7):593. [9] TAKKEN W, KNOLS B G J. Odor-mediated behavior of afrotropical malaria mosquitoes[J]. Annual Review of Entomology, 1999, 44(17):131-157. [10] WANG G R, CAREY A F., CARLSON J R, et al. Molecular basis of odor coding in the malaria vector mosquito Anopheles gambiae[J]. Proc Natl Acad Sci USA, 2010, 107(9):4418-4423. [11] TUMLINSON J H. The importance of volatile organic compounds in ecosystem functioning[J]. Journal of Chemical Ecology,2014, 40(3):212. [12] HERRERA-VARELA M, LINDH J, LINDSAY S W, et al. Habitat discrimination by gravid Anopheles gambiae sensu lato-a push-pull system[J]. Malaria Journal, 2014, 13:133. [13] MA M H, HUANG M S, LENG P E. Abundance and distribution of immature mosquitoes in urban riversproximate to their larval habitats[J]. Acta Tropica, 2016, 162:121-129. [14] RAJKUMAR S, JEBANESAN A. Larvicidal and oviposition activity of Cassia obtusifolia Linn (Family:Leguminosae) leaf extract against malarial vector, Anopheles stephensi Liston (Diptera:Culicidae)[J]. Parasitology Research, 2009, 104(2):337-340. [15] GOVINDARAJAN M, MATHIVANAN T, ELUMALAI K, et al. Ovicidal and repellent activities of botanical extracts against Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi (Diptera:Culicidae)[J]. Asian Pacific Journal of Tropical Biomedicine, 2011, 1(1):43-48. [16] 黄民生, 马明海, 曹承进, 等. 城市水体环境及其治理:案例分析[M]. 北京:中国建筑工业出版社, 2017. [17] 史睿杰, 谢寿安, 赵薇, 等. 青海云杉针叶和枝条的挥发性化合物的固相微萃GC/MS分析[J]. 西北林学院学报, 2011, 26(6):95-99. [18] GANESAN K, MENDKI M J, SURYANARAYANA M V S, et al. Studies of Aedes aegypti (Diptera:Culicidae) ovipositional responses to newly identified semiochemicals from conspecific eggs[J]. Australian Journal of Entomology, 2006, 45:75-80. [19] KRAMER W L, MULLA M S. Oviposition attractants and repellents of mosquitoes:Oviposition responses of culex mosquitoes to organic infusions[J]. Environmental Entomology, 1979, 8(6):1111-1117. [20] GAO Y, JIN Y J, LI H D, et al. Volatile organic compounds and their roles in bacteriostasisin five conifer Species[J]. Journal of Integrative Plant Biology, 2005, 47(4):499-507. [21] GOVINDARAJAN M, SIVAKUMAR R, RAJESWARI M, et al. Chemical composition and larvicidal activity of essential oil from Mentha spicata (Linn.) against three mosquito species[J]. Parasitology Research, 2012, 110(5):2023-2032. [22] 盛辛辛, 曹谨玲, 赵凤岐, 等. 芦苇和美人蕉及薄荷用作人工湿地植物对中水的净化效果[J]. 湖南农业大学学报(自然科学版), 2013, 39(4):423-428. [23] 霍张丽, 朱广龙, 张江汀, 等. 模拟人工湿地植物对富营养化水体的修复研究[J]. 水土保持研究,2014, 21(5):267-271. [24] BAAK-BAAK C M, RODRÍGUEZ-RAMÍREZ A D, GARCÍA-REJÓN J E, et al. Development and laboratory evaluation of chemically-based baited ovitrap for the monitoring of Aedes aegypti[J]. Journal of Vector Ecology, 2013, 38(1):175-181. [25] MATASYOH J C, WATHUTA E M, KARIUKI S T, et al. Chemical composition and larvicidal activity of Piper capense essential oil against the malaria vector, Anopheles gambiae[J]. Journal of Asia-Pacific Entomology, 2011, 14(1):26-28. [26] AUTRAN E S, NEVES I A, DA SILVA C S B, et al. Chemical composition, oviposition deterrent and larvicidal activities against Aedes aegypti of essential oils from Piper marginatum Jacq. (Piperaceae)[J]. Bioresource Technology, 2009, 100(7):2284-2288. [27] PERRY A S, FAY R W. Correlation of chemical constitution and physical properties of fatty acid esters with oviposition response of Ae. aegypti[J]. Mosquito News, 1967, 27(2):175-183. [28] SHARMA K R, SEENIVASAGAN T, RAO A N, et al. Oviposition responses of Aedes aegypti and Aedes albopictus to certain fatty acid esters[J]. Parasitology Research, 2008, 103(5):1065-1073. [29] NYASEMBE V O, TORTO B. Volatile phytochemicals as mosquito semiochemicals[J]. Phytochemistry Letters, 2014, 8(1):196-201. [30] DU Y J, MILLAR J G. Electroantennogram and oviposition bioassay responses of culex quinquefasciatus and culex tarsalis (Diptera:Culicidae) to chemicals in odors from bermuda grass infusions[J]. Journal of Medical Entomology, 1999, 36(2):158-166. [31] AFIFY A, GALIZIA C G. Gravid females of the mosquito Aedes aegypti avoid oviposition on m-cresol in the presence of the deterrent isomer p-cresol[J]. Parasites & Vectors, 2014(7):315. |