[1] WEYL H. Über beschränkte quadratische formen, deren differenz vollstetig ist[J]. Rendiconti Del Circolo Matematico Di Palermo, 1909, 27(1):373-392. DOI:10.1007/BF03019655. [2] RAKOČEVIĆ V. On a class of operators[J]. Matematicki Vesnik, 1985, 37(4):423-426. [3] RAKOČEVIĆ V. Operators obeying a-Weyl's theorem[J]. Romanian Journal of Pure and Applied Mathematics, 1989, 34(10):915-919. [4] BERKANI M, KOLIHA J J. Weyl type theorems for bounded linear operators[J]. Acta Scientiarum Mathematicarum, 2003, 69(1/2):359-376. [5] SUN C H, CAO X H, DAI L. Property (ω1) and Weyl type theorem[J]. Journal of Mathematical Analysis and Applications, 2010, 363(1):1-6. DOI:10.1016/j.jmaa.2009.07.045. [6] CAO X H. Weyl spectrum of the products of operators[J]. Journal of the Korean Mathematics Society, 2008, 45:771-780. DOI:10.4134/JKMS.2008.45.3.771. [7] 曹小红, 刘俊英. 一致Fredholm及广义(ω')指标算子性质[J]. 数学学报, 2010, 53(5):953-962 [8] 戴磊, 曹小红, 张建华, 等. CFI算子和Weyl型定理[J]. 数学进展, 2014, 43(4):590-598. DOI:10.11845/sxjz.2012159b [9] CONWAY J. A Course in Functional Analysis[M]. New York:Springer-Verlag, 1990. [10] KITAI C. Invariant closed sets for linear operators[D]. Toronto:University of Toronto, 1982. [11] HERRERO D A. Limits of hypercyclic and supercyclic operators[J]. Journal of Functional Analysis, 1991, 99(1):179-190. DOI:10.1016/0022-1236(91)90058-D.
|