[1] RAMKRISHNA D. Population Balances:Theory and Applications to Particulate Systems in Engineering[M]. San Diego:Academic Press, 2000. [2] HULBURT H M, KATZ S. Some problems in particle technology:A statistical mechanical formulation[J]. Chemical Engineering Science, 1964, 19(8):555-574. DOI:10.1016/0009-2509(64)85047-8. [3] RANDOLPH A D. A population balance for countable entities[J]. Canadian Journal of Chemical Engineering, 1964, 42(6):280-281. DOI:10.1002/cjce.5450420612. [4] RANDOLPH A D, LARSON M A. Theory of Particulate Processes:Analysis and Techniques of Continuous Crystallization[M]. 2nd ed. San Diego:Academic Press, 1988. [5] MULLIN J W. Crystallization[M]. 4th ed. Oxford:Butterworth-Heinemann, 2001. [6] CAMERON I T, WANG F Y, IMMANUEL C D, et al. Process systems modelling and applications in granulation:A review[J]. Chemical Engineering Science, 2005, 60(14):3723-3750. DOI:10.1016/j.ces.2005.02.004. [7] FILBET F, LAURENÇOT P. Numerical simulation of the Smoluchowski coagulation equation[J]. Society for Industrial & Applied Mathematics, 2003, 25(6):2004-2028. [8] ZHANG N, XIA T C. A new negative discrete hierarchy and its N-fold Darboux transformation[J]. Communications in Theoretical Physics, 2017, 68:687-692. DOI:10.1088/0253-6102/68/6/687. [9] LI Q, XIA T C, YUE C. Algebro-geometric solutions for the generalized nonlinear Schrödinger hierarchy[J]. Journal of Nonlinear Science & Applications, 2016, 9:661-676. [10] SCHUMANN T E W. Theoretical aspects of the size distribution of fog particles[J]. Quarterly Journal of the Royal Meteorological Society, 1940, 66(285):195-208. [11] 田畴. 李群及其在微分方程中的应用[M]. 北京:科学出版社, 2001. [12] BLUMAN G W, KUMEI S. Symmetries and Differential Equations[M]. Berlin:Springer, 1989. [13] OLVER J P. Applications of Lie Group to Differential Equation[M]. 2nd ed. New York:Springer, 1993. [14] OVSIANNIKOV L V. Group Analysis of Differential Equations[M]. New York:Academic Press, 1982. [15] IBRAGIMOV N H. Elementary Lie Group Analysis and Ordinary Differential Equations[M]. Chichester:John Wiley & Sons, 1999. [16] IBRAGIMOV N H. Transformation Groups and Lie Algebra[M]. Beijing:Higher Education Press, 2013. [17] MELESHKO S V. Methods for Constructing Exact Solutions of Partial Differential Equations:Mathematical and Analytical Techniques with Applications to Engineering[M]. New York:Springer, 2005. [18] GRIGORIEV Y N, IBRAGIMOV N H, KOVALEV V F, et al. Symmetries of Integro-differential Equations:with Applications in Mechanics and Plasma Physics[M]. New York:Springer, 2010. [19] ZHOU L Q, MELESHKO S V. Group analysis of integro-differential equations describing stress relaxation behavior of one-dimensional viscoelastic materials[J]. International Journal of Non-Linear Mechanics, 2015, 77:223-231. DOI:10.1016/j.ijnonlinmec.2015.08.008. [20] ZHOU L Q, MELESHKO S V. Invariant and partially invariant solutions of integro-differential equations for linear thermoviscoelastic aging materials with memory[J]. Continuum Mechanics & Thermodynamics, 2017, 29(1):207-224. [21] ZHOU L Q, MELESHKO S V. Symmetry groups of integro-differential equations for linear thermoviscoelastic materials with memory[J]. Journal of Applied Mechanics & Technical Physics, 2017, 58(4):587-609. [22] SURIYAWICHITSERANEE A, GRIGORIEV Y N, MELESHKO S V. Group analysis of the Fourier transform of the spatially homogeneous and isotropic Boltzmann equation with a source term[J]. Communications in Nonlinear Science & Numerical Simulation, 2015, 20(3):719-730. [23] GRIGOREV Y N, MELESHKO S V, SURIYAWICHITSERANEE A. Exact solutions of the Boltzmann equations with a source[J]. Journal of Applied Mechanics & Technical Physics, 2018, 59(2):189-196. [24] MKHIZE T G, GOVINDER K, MOYO S, et al. Linearization criteria for systems of two second-order stochastic ordinary differential equations[J]. Applied Mathematics & Computation, 2017, 301:25-35. [25] LONG F S, KARNBANJONG A, SURIYAWICHITSERANEE A, et al. Application of a Lie group admitted by a homogeneous equation for group classification of a corresponding inhomogeneous equation[J]. Communications in Nonlinear Science & Numerical Simulation, 2017, 48:350-360. [26] BARENBLATT G I. Scaling, Self-similarity, and Intermediate Asymptotics[M]. Cambridge:Cambridge University Press, 1996. [27] LANGHAAR H L. Dimensional Analysis and Theory of Models[M]. New York:John Wiley and Sons, 1951. [28] LIN F B, FLOOD A E, MELESHKO S V. Exact solutions of population balance equation[J]. Communications in Nonlinear Science & Numerical Simulation, 2016, 36:378-390. [29] LIN F B, MELESHKO S V, FLOOD A E. Symmetries of population balance equations for aggregation, breakage and growth processes[J]. Applied Mathematics and Computation, 2017, 307:193-203. DOI:10.1016/j.amc.2017.02.048. [30] LIN F B, MELESHKO S V, FLOOD A E. Exact solutions of the population balance equation including particle transport, using group analysis[J]. Communications in Nonlinear Science & Numerical Simulation, 2018, 59:255-271.
|