[1] 纪文迪, 王晓玲, 周傲英. 广告点击率估算技术综述 [J]. 华东师范大学学报(自然科学版), 2013(3): 2-14 [2] ZHAO Z D, SHANG M S. User-based collaborative-filtering recommendation algorithms on hadoop [C]// 2010 3rd International Conference on Knowledge Discovery and Data Mining. IEEE, 2010: 478-481. [3] PIRASTEH P, JUNG J J, HWANG D. Item-based collaborative filtering with attribute correlation: A case study on movie recommendation [C]// Asian Conference on Intelligent Information and Database Systems 2014: Intelligent Information and Database Systems. Cham: Springer, 2014: 245-252. DOI: 10.1007/978-3-319-05458-2_26. [4] RICHARDSON M, DOMINOWSKA E, RAGNO R J, et al. Predicting clicks: Estimating the click-through rate for new ads [C]// Proceedings of the 16th International Conference on World Wide Web. ACM, 2007: 521-530. DOI: 10.1145/1242572.1242643. [5] JOACHIMS T. Optimizing search engines using clickthrough data [C]//Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2002: 133-142. [6] ZHANG W N, DU T M, WANG J. Deep learning over multi-field categorical data [C]//European Conference on Information Retrieval 2016: Advances in Information Retrieval. Cham: Springer, 2016: 45-57. DOI: 10.1007/978-3-319-30671-1_4. [7] RENDLE S. Factorization machines [C]//2010 IEEE International Conference on Data Mining. IEEE, 2010: 995-1000. DOI: 10.1109/ICDM.2010.127. [8] QUINLAN J R. Induction of decision trees [J]. Machine Learning, 1986, 1(1): 81-106. DOI: 10.1023/A:1022643204877. [9] SCHAPIRE R E. A brief introduction to boosting [C]// Proceedings of the 16th International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers Inc, 1999: 1401-1406. [10] CHEN T, GUESTRIN C. Xgboost: A scalable tree boosting system [C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2016: 785-794. [11] QU Y, CAI H, REN K, et al. Product-based neural networks for user response prediction [C]//2016 IEEE 16th International Conference on Data Mining (ICDM). IEEE, 2016: 1149-1154. [12] CHENG H T, KOC L, HARMSEN J, et al. Wide & deep learning for recommender systems [C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. ACM, 2016: 7-10. [13] GUO H, TANG R, YE Y, et al. DeepFM: A factorization-machine based neural network for CTR prediction [C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence. AAAI, 2017: 1725-1731. [14] AGUIAR E, NAGRECHA S, CHAWLA N V. Predicting online video engagement using clickstreams [C]//2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA). IEEE, 2015: 1-10. [15] 李思琴, 林磊, 孙承杰. 基于卷积神经网络的搜索广告点击率预测 [J]. 智能计算机与应用, 2015(5): 22-25. DOI: 10.3969/j.issn.2095-2163.2015.05.007 [16] HE X R, PAN J F, JIN O, et al. Practical lessons from predicting clicks on ads at Facebook [C]//ADKDD’14: Proceedings of the 8th International Workshop on Data Mining for Online Advertising. ACM, 2014: pp.1-9. DOI: 10.1145/2648584.2648589. [17] 叶健, 赵慧. 基于大规模弹幕数据监听和情感分类的舆情分析模型 [J]. 华东师范大学学报(自然科学版), 2019(3): 86-100 [18] BROCKWELL P J, DAVIS R A, CALDER M V. Introduction to Time Series and Forecasting [M]. New York: Springer, 2002: 73-96. [19] XIAO J, YE H, HE X N, et al. Attentional factorization machines: Learning the weight of feature interactions via attention networks [C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence. AAAI, 2017: 3119-3125. |