[1] YANG Z H, WU L M, CHU Y M. Optimal power mean bounds for Yang mean [J]. J Inequal Appl, 2014, 401: 1-10. [2] LI J F, YANG Z H, CHU Y M. Optimal power mean bounds for the second Yang mean [J]. J Inequal Appl, 2016, 31: 1-9. [3] QIAN W M, CHU Y M. Best possible bounds for Yang mean using generalized logarithmic mean [J]. Math Probl Eng, 2016, Article ID 8901258. [4] QIAN W M, CHU Y M, ZHANG X H. Sharp one-parameter mean bounds for Yang mean [J]. Mathematical Problems in Engineering, 2016, Article ID 1579468. [5] ZHOU S S, QIAN W M, CHU Y M, et al. Sharp power-type Heronian mean bounds for the Sándor and Yang means [J]. J Inequal Appl, 2015, 159: 1-10. [6] VUORINEN M. Hypergeometric Functions in Geometric Function Theory, Special Functions and Differential Equations [M]. New Delhi: Allied Publ, 1998. [7] 裘松良, 沈洁敏. 关于平均值的两个问题 [J]. 杭州电子工业学院学报, 1997, 17(3): 1-7 [8] YANG Z H. Three families of two-parameter means constructed by trigonometric functions [J]. J Inequal Appl, 2013, 541: 1-27. [9] WANG J L, XU H Z, QIAN W M. Sharp bounds for Sándor-Yang means in terms of Lehmer means [J]. Adv Inequal Appl, 2018, 2: 1-8. [10] NEUMAN E. On a new family of bivariate means [J]. J Math Inequal, 2017, 11(3): 673-681. [11] YANG Z H, CHU Y M. Optimal evaluations for the Sándor-Yang mean by power mean [J]. Math Inequal Appl, 2016, 19(3): 1031-1038. [12] ZHAO T H, QIAN W M, SONG Y Q. Optimal bounds for two Sándor-type means in terms of power means [J]. J Inequal Appl, 2016, 64: 1-10. [13] YANG Y Y, QIAN W M. Two optimal inequalities related to the Sándor-Yang type mean and one-parameter mean [J]. Communications in Mathematical Research (English version), 2016, 32(4): 352-358. [14] QIAN W M, XU H Z, CHU Y M. Improvements of bounds for the Sándor-Yang means [J]. J Inequal Appl, 2019, 73: 1-8. [15] XU H Z, CHU Y M, QIAN W M, Sharp bounds for the Sándor-Yang means in terms of arithmetic and contra-harmonic means [J]. J Inequal Appl, 2018, 127: 1-13. [16] 徐会作. Sándor-Yang平均关于一些二元平均凸组合的确界 [J]. 华东师范大学学报(自然科学版), 2017(4): 41-50. DOI: 10.3969/j.issn.1000-5641.2017.04.004 [17] XU H Z, QIAN W M. Sharp bounds for Sándor-Yang means in terms of quadratic mean [J]. J Math Inequal, 2018, 12(4): 1149-1158. [18] 张帆, 杨月英, 钱伟茂. Sándor-Yang平均关于经典平均凸组合的确界 [J]. 浙江大学学报(理学版), 2018, 45(6): 665-672 |