Journal of East China Normal University(Natural Science) ›› 2021, Vol. 2021 ›› Issue (2): 132-141.doi: 10.3969/j.issn.1000-5641.2021.02.013
• Ecological and Environmental Sciences • Previous Articles Next Articles
Mingming ZHENG, Xiaohan LI, Li HUANG, Shenghe YANG, Siwei HU, Yongchuan YANG*()
Received:
2020-01-10
Online:
2021-03-25
Published:
2021-04-01
Contact:
Yongchuan YANG
E-mail:ycyang@cqu.edu.cn
CLC Number:
Mingming ZHENG, Xiaohan LI, Li HUANG, Shenghe YANG, Siwei HU, Yongchuan YANG. Variation characteristics of plant communities at abandoned farmlands of different ages in the Chongqing suburban area[J]. Journal of East China Normal University(Natural Science), 2021, 2021(2): 132-141.
Table 2
Composition of family, genus, and species in abandoned farmland in the Chongqing suburban area"
科 | 属 | 种 | 科 | 属 | 种 | 科 | 属 | 种 | ||
菊科Compositae | 17 | 20 | 石竹科Caryophyllaceae | 2 | 2 | 楝科Meliaceae | 1 | 1 | ||
禾本科Gramineae | 16 | 16 | 苋科Amaranthaceae | 2 | 2 | 鳞始蕨科Lindsaeaceae | 1 | 1 | ||
唇形科Labiatae | 4 | 4 | 凤尾蕨科Pteridaceae | 1 | 2 | 毛茛科Ranunculaceae | 1 | 1 | ||
蓼科Polygonaceae | 2 | 4 | 酢浆草科Oxalidaceae | 1 | 2 | 木贼科Equisetaceae | 1 | 1 | ||
鸭跖草科Commelinaceae | 2 | 4 | 车前科Plantaginaceae | 1 | 1 | 茜草科Rubiaceae | 1 | 1 | ||
伞形科Umbelliferae | 3 | 3 | 豆科Leguminosae | 1 | 1 | 忍冬科Caprifoliaceae | 1 | 1 | ||
蔷薇科Rosaceae | 3 | 3 | 海金沙科Lygodiaceae | 1 | 1 | 三白草科Saururaceae | 1 | 1 | ||
桑科Moraceae | 3 | 3 | 葫芦科Cucurbitaceae | 1 | 1 | 商陆科Phytolaccaceae | 1 | 1 | ||
十字花科Cruciferae | 3 | 3 | 金星蕨科Thelypteridaceae | 1 | 1 | 荨麻科Urticaceae | 1 | 1 | ||
玄参科Scrophulariaceae | 3 | 3 | 堇菜科Violaceae | 1 | 1 | 芸香科Rutaceae | 1 | 1 | ||
大戟科Euphorbiaceae | 2 | 2 | 景天科Crassulaceae | 1 | 1 | 樟科Lauraceae | 1 | 1 | ||
葡萄科Vitaceae | 2 | 2 | 爵床科Acanthaceae | 1 | 1 | 紫草科Boraginaceae | 1 | 1 | ||
茄科Solanaceae | 2 | 2 | 藜科Chenopodiaceae | 1 | 1 | 莎草科Cyperaceae | 1 | 1 |
Table 3
Frequency and life form characteristics of dominant species in spring"
物种名 | 生活型 | 群落类型 1 | 群落类型 2 | 群落类型 3 | 群落类型 4 | 总数 | ||||||||||
n = 8 | n = 10 | n = 5 | n = 1 | n = 24 | ||||||||||||
A | B | A | B | A | B | A | B | A | B | |||||||
一年生草本 | 鼠麴草 Gnaphalium affine | Th(w) | 2 | 8 | 4 | 5 | 2 | 17 | ||||||||
钻叶紫菀 Aster subulatus | Th | 1 | 8 | 6 | 2 | 1 | 16 | |||||||||
看麦娘 Alopecurus aequalis | Th(w) | 1 | 7 | 6 | 2 | 1 | 15 | |||||||||
黄鹌菜 Youngia japonica | Th(w) | 5 | 8 | 1 | 9 | 4 | 6 | 21 | ||||||||
小蓬草 Erigeron canadensis | Th(w) | 4 | 8 | 1 | 8 | 4 | 5 | 20 | ||||||||
球序卷耳 Cerastium glomeratum | Th(w) | 2 | 8 | 2 | 8 | 2 | 4 | 18 | ||||||||
窃衣 Torilis scabra | Th(w) | 4 | 4 | 9 | 2 | 4 | 15 | |||||||||
刺果毛茛 Ranunculus muricatus | Th | 5 | 1 | 8 | 5 | 1 | 1 | 19 | ||||||||
苦苣菜 Sonchus oleraceus | Th | 6 | 1 | 6 | 4 | 1 | 1 | 17 | ||||||||
猪殃殃 Galium spurium | Th | 3 | 1 | 5 | 1 | 1 | 1 | 10 | ||||||||
求米草 Oplismenus undulatifolius | Th | 1 | 2 | 3 | 1 | 1 | 6 | |||||||||
长刺酸模 Rumex trisetifer | Th | 1 | 3 | 1 | 1 | 4 | ||||||||||
龙葵 Solanum nigrum | Th | 1 | 1 | 7 | 1 | 8 | ||||||||||
葎草 Humulus scandens | Th | 3 | 7 | 3 | 7 | |||||||||||
荩草 Arthraxon hispidus | Th | 1 | 1 | 10 | 1 | 5 | 1 | 2 | 17 | |||||||
多年生草本 | 酢浆草 Oxalis corniculata | CH | 3 | 7 | 6 | 5 | 1 | 3 | 19 | |||||||
风轮菜 Clinopodium chinense | H | 1 | 5 | 5 | 3 | 1 | 13 | |||||||||
天胡荽 Hydrocotyle sibthorpioides | CH | 1 | 1 | 3 | 4 | 1 | 1 | 9 | ||||||||
喜旱莲子草 Alternanthera philoxeroides | H | 2 | 8 | 9 | 10 | 2 | 5 | 1 | 1 | 14 | 24 | |||||
柯孟披碱草 Roegneria kamoji | H | 2 | 3 | 10 | 4 | 3 | 16 | |||||||||
蛇莓 Duchesnea indica | CH | 3 | 5 | 6 | 3 | 5 | 12 | |||||||||
红花酢浆草 Oxalis corymbosa | G | 2 | 4 | 2 | 4 | |||||||||||
艾 Artemisia argyi | H | 1 | 6 | 1 | 6 | |||||||||||
接骨草 Sambucus chinensis | N | 2 | 3 | 2 | 3 | |||||||||||
苎麻 Boehmeria nivea | N | 1 | 1 | 1 | 1 | |||||||||||
白茅 Imperata cylindrica | G | 1 | 5 | 1 | 5 | 2 | 10 | |||||||||
狗牙根 Cynodon dactylon | H | 3 | 4 | 3 | 5 | 1 | 1 | 4 | 13 | |||||||
木本植物 | 构树 Broussonetia papyrifera | MM | 4 | 7 | 2 | 2 | 6 | 9 | ||||||||
柑橘 Citrus reticulata | M | 1 | 1 | 1 | 1 | |||||||||||
樟 Cinnamomum camphora | MM | 1 | 3 | 1 | 1 | 4 |
Table 4
Frequency and life form characteristics of dominant species in autumn"
物种名 | 生活型 | 群落类型 1 | 群落类型 2 | 群落类型 3 | 群落类型 4 | 总数 | ||||||||||
n = 12 | n = 7 | n = 6 | n = 1 | n = 26 | ||||||||||||
A | B | A | B | A | B | A | B | A | B | |||||||
一年生草本 | 窃衣Torilis scabra | Th(w) | 5 | 6 | 5 | 6 | ||||||||||
钻叶紫菀Aster subulatus | Th | 2 | 4 | 5 | 2 | 9 | ||||||||||
荩草Arthraxon hispidus | Th | 1 | 2 | 1 | 1 | 3 | ||||||||||
马唐Digitaria sanguinalis | Th | 6 | 11 | 5 | 6 | 1 | 11 | 18 | ||||||||
求米草Oplismenus undulatifolius | Th | 2 | 4 | 7 | 5 | 4 | 14 | |||||||||
石荠苎Mosla scabra | Th | 1 | 5 | 1 | 5 | |||||||||||
多年生草本 | 双穗雀稗Paspalum distichum | H | 1 | 5 | 1 | 1 | 6 | |||||||||
柯孟披碱草Roegneria kamoji | H | 1 | 5 | 5 | 1 | 10 | ||||||||||
蛇莓Duchesnea indica | CH | 1 | 7 | 4 | 2 | 1 | 13 | |||||||||
喜旱莲子草Alternanthera philoxeroides | H | 4 | 10 | 4 | 7 | 2 | 6 | 1 | 10 | 24 | ||||||
水蜈蚣Kyllinga polyphylla | HH | 5 | 1 | 6 | 1 | 1 | 12 | |||||||||
水芹Oenanthe javanica | HH | 2 | 2 | 1 | 1 | 3 | 3 | |||||||||
白茅Imperata cylindrica | G | 4 | 3 | 3 | 3 | 7 | ||||||||||
狗牙根Cynodon dactylon | H | 1 | 4 | 6 | 1 | 4 | 8 | |||||||||
狼尾草Pennisetum alopecuroides | H | 5 | 7 | 5 | 8 | |||||||||||
木本植物 | 樟Cinnamomum camphora | MM | 1 | 1 | 1 | 1 |
1 |
MACE G M, NORRIS K, FITTER A H. Biodiversity and ecosystem services: A multilayered relationship. Trends in Ecology & Evolution, 2012, 27 (1): 19- 26.
doi: 10.1016/j.tree.2011.08.006 |
2 |
GABA S, GABRIEL E, CHADOEUF J, et al. Herbicides do not ensure for higher wheat yield, but eliminate rare plant species. Scientific Reports, 2016, (6): 30112.
doi: 10.1038/srep30112 |
3 |
LIU Y, DUAN M, YU Z, et al. Environmental factors acting at multiple scales determine assemblages of insects and plants in agricultural mountain landscapes of northern China. Agriculture, Ecosystems & Environment, 2016, 224, 86- 94.
doi: 10.1016/j.agee.2016.03.025 |
4 |
CAROL S, J. K T, GRAEME B, et al. Organic and conventional agriculture: A useful framing?. Annual Review of Environment & Resources, 2017, 42 (1): 317- 46.
doi: 10.1146/annurev-environ-110615-085750 |
5 |
STOATE C, BALDI A, BEJA P, et al. Ecological impacts of early 21st century agricultural change in Europe--a review. Journal of Environmental Management, 2010, 91 (1): 22- 46.
doi: 10.1016/j.jenvman.2009.07.005 |
6 |
RUSKULE A, NIKODEMUS O, KASPARINSKIS R, et al. The perception of abandoned farmland by local people and experts: Landscape value and perspectives on future land use. Landscape & Urban Planning, 2013, 115 (Complete): 49- 61.
doi: 10.1016/j.landurbplan.2013.03.012 |
7 |
KLEIJN D, BAQUERO R A, CLOUGH Y, et al. Mixed biodiversity benefits of agri-environment schemes in five European countries. Ecology Letters, 2006, 9 (3): 243- 254.
doi: 10.1111/j.1461-0248.2005.00869.x |
8 |
WESTBURY D B, WOODCOCK B A, HARRIS S J, et al. Buffer strip management to deliver plant and invertebrate resources for farmland birds in agricultural landscapes. Agriculture Ecosystems & Environment, 2017, 240 (2): 15- 23.
doi: 10.1016/j.agee.2017.02.031 |
9 |
QUEIROZ C, BEILIN R, FOLKE C, et al. Farmland abandonment: Threat or opportunity for biodiversity conservation? A global review. Frontiers in Ecology & the Environment, 2014, 12 (5): 288- 96.
doi: 10.1890/120348 |
10 |
TAKESHI O, KAZUNORI K, HIROMUNE M, et al. Areas of increasing agricultural abandonment overlap the distribution of previously common, currently threatened plant species. Plos One, 2013, 8 (11): e79978.
doi: 10.1371/journal.pone.0079978 |
11 | KAMP J, REINHARD A, FRENZEL M, et al. Farmland bird responses to land abandonment in Western Siberia. Agriculture, Ecosystems & Environment, 2018, 268 (6): 1- 9. |
12 |
ZHENG Z, QIANG L, LIU G, et al. Soil resistance to concentrated flow and sediment yields following cropland abandonment on the Loess Plateau, China. Journal of Soils & Sediments, 2017, 17 (6): 1- 10.
doi: 10.1007/s11368-017-1650-3 |
13 |
WERTEBACH T M, HOLZEL N, KAMPF I, et al. Soil carbon sequestration due to post-Soviet cropland abandonment: Estimates from a large‐scale soil organic carbon field inventory. Global Change Biology, 2017, 23 (9): 3729- 3741.
doi: 10.1111/gcb.13650 |
14 |
YANG H, ZHANG F, CHEN Y, et al. Assessment of reclamation treatments of abandoned farmland in an arid region of China. Sustainability, 2016, 8 (11): 1183.
doi: 10.3390/su8111183 |
15 |
张瑞红, 蔡文涛, 来利明, 等. 鄂尔多斯高原弃耕农田植物群落演替过程中物种多样性的变化. 干旱区资源与环境, 2018, 32 (10): 178- 183.
doi: 10.13448/j.cnki.jalre.2018.320 |
16 | 赵威, 李亚鸽, 亓琳, 等. 豫西丘陵坡地弃耕农田植被演替对土壤碳、氮库的影响. 生态学报, 2018, 38 (19): 7016- 7023. |
17 | 李治元, 李昌龙, 王多泽, 等. 石羊河下游盐渍化弃耕地植被演替特征分析. 西北植物学报, 2010, 30 (10): 2087- 2092. |
18 |
严子柱, 尉秋实, 李得禄, 等. 民勤青土湖盐碱化退耕地天然植被的演替特征. 中国农学通报, 2014, 30 (16): 1- 6.
doi: 10.11924/j.issn.1000-6850.2013-2650 |
19 | 赵彩杉. 中国耕地撂荒的空间格局及气候效应 [D]. 哈尔滨: 哈尔滨师范大学, 2019. |
20 |
JACOB A L, LECHOWICZ M J, CHAPMAN C A. Non-native fruit trees facilitate colonization of native forest on abandoned farmland. Restoration Ecology, 2017, 25 (2): 211- 9.
doi: 10.1111/rec.12414 |
21 | 张强. 农地弃耕的法律对策研究 [D]. 兰州: 兰州大学, 2019. |
22 |
平翠枝, 红梅, 王文东, 等. 不同耕作方式对黑土区农田土壤物理特性的影响. 中国农学通报, 2020, 36 (7): 83- 89.
doi: 10.11924/j.issn.1000-6850.casb18110065 |
23 | 张佰林, 杨庆媛, 严燕, 等. 快速城镇化进程中不同类型农户弃耕特点及原因——基于重庆市十区县540户农户调查. 资源科学, 2011, 33 (11): 2047- 2054. |
24 | 王永艳, 李阳兵, 何太蓉. 平行岭谷区都市城郊耕地景观演变案例研究——以重庆市沙坪坝区为例. 长江流域资源与环境, 2013, 22 (8): 1027- 1035. |
25 |
何德清, 刘辉, 何为媛. 重庆沙坪坝低山晚熟菜区土壤有效养分状况及施肥建议. 南方农业, 2012, 6 (9): 25- 28.
doi: 10.19415/j.cnki.1673-890x.2012.09.008 |
26 | 吴征镒. 中国植物志 [M]. 北京: 科学出版社, 2004. |
27 | 张泽溥, 广田伸七. 中国杂草原色图鉴 [M]. 北京: 中华人民共和国农业部农药检定所, 2000. |
28 |
KITAZAWA T, OHSAWA M. Patterns of species diversity in rural herbaceous communities under different management regimes, Chiba, central Japan. Biological Conservation, 2002, 104 (2): 239- 249.
doi: 10.1016/S0006-3207(01)00170-7 |
29 | HILL H O. DECORANA-A FORTRAN program for detrended correspondence analysis and reciprocal averaging [M]. New York: Cornell University, 1979. |
30 |
OHSAWA M. Differentiation of vegetation zones and species strategies in the subalpine region of Mt. Fuji. Vegetatio, 1984, 57 (1): 15- 52.
doi: 10.2307/20146097 |
31 |
UCHIDA K, KOYANAGI T F, MATSUMURA T, et al. Patterns of plant diversity loss and species turnover resulting from land abandonment and intensification in semi-natural grasslands. Journal of Environmental Management, 2018, 218, 622- 629.
doi: 10.1016/j.jenvman.2018.04.059 |
32 | 石丹, 倪九派, 倪呈圣, 等. 巫山高山移民迁出区不同弃耕年限对植物物种多样性的影响. 生态学报, 2019, 39 (15): 5584- 5593. |
33 | 张海峰. 南水北调中线水源区弃耕地植被群落学特征及土壤侵蚀和非点源污染研究 [D]. 陕西 杨凌: 西北农林科技大学, 2005. |
34 | 彭阳. 退耕造林与弃耕撂荒形成的植被群落特征和碳储量比较 [D]. 北京: 中国林业科学研究院, 2017. |
35 |
NEMOTO M, OTSUKA H. Influence of farming system on the floristic composition of paddy landscapes: A case study in a rural hilly zone in Zhejiang province, China. Landscape & Ecological Engineering, 2014, 10 (1): 173- 80.
doi: 10.1007/s11355-011-0150-7 |
36 | 王东丽. 黄土丘陵沟壑区植物种子生活史策略及种子补播恢复研究 [D]. 陕西 杨凌: 西北农林科技大学, 2014. |
37 | 周凯, 郭维明, 徐迎春. 菊科植物化感作用研究进展. 生态学报, 2004, (8): 1780- 1788. |
38 |
汤秀美, 林雄, 黄家盛, 等. 闽东地区农田杂草种类的调查. 福建农业科技, 1990, (5): 19.
doi: 10.13651/j.cnki.fjnykj.1990.05.019 |
39 | 陈杰, 郭屹立, 卢训令, 等. 伊洛河流域草本植物群落物种多样性. 生态学报, 2012, 32 (10): 3021- 3030. |
40 |
胡发广, 尼章光, 解德宏, 等. 云南怒江干热河谷区旱地农田杂草及群落组成调查. 热带农业科技, 2005, (4): 1- 4.
doi: 10.16005/j.cnki.tast.2005.04.001 |
41 |
HOU J, FU B, LIU Y, et al. Ecological and hydrological response of farmlands abandoned for different lengths of time: Evidence from the Loess Hill Slope of China. Global and Planetary Change, 2014, 113, 59- 67.
doi: 10.1016/j.gloplacha.2013.12.008 |
42 |
KATAYAMA N, BABA Y G, KUSUMOTO Y, et al. A review of post-war changes in rice farming and biodiversity in Japan. Agricultural Systems, 2014, 132, 73- 84.
doi: 10.1016/j.agsy.2014.09.001 |
43 |
LI S P, CADOTTE M W, MEINERS S J, et al. Convergence and divergence in a long-term old-field succession: The importance of spatial scale and species abundance. Ecology Letters, 2016, 19 (9): 1101- 1109.
doi: 10.1111/ele.12647 |
44 |
LIU H, LIANG C, AI Z, et al. Plant-mycorrhizae association affects plant diversity, biomass, and soil nutrients along temporal gradients of natural restoration after farmland abandonment in the Loess Plateau, China. Land Degradation & Development, 2019, 30 (14): 1677- 1690.
doi: 10.1002/ldr.3372 |
45 |
MAHAUT L, FRIED G, GABA S. Patch dynamics and temporal dispersal partly shape annual plant communities in ephemeral habitat patches. Oikos, 2018, 127 (1): 147- 159.
doi: 10.1111/oik.04415 |
46 |
王宁, 贾燕锋, 焦菊英, 等. 陕北安塞退耕地持久土壤种子库与地上植被的对应关系. 中国水土保持科学, 2009, 7 (6): 51- 57.
doi: 10.16843/j.sswc.2009.06.009 |
47 |
JIANG X, ZHANG W, WANG G. Biodiversity effects on biomass production and invasion resistance in annual versus perennial plant communities. Biodiversity & Conservation, 2007, 16 (6): 1983- 1994.
doi: 10.1007/s10531-006-9061-6 |
[1] | ZHANG Kai-xuan, CHE Sheng-quan, MA Shao-chu,WANG Rui, DA Liang-jun. Diversity, spatial pattern and dynamics of vegetation under urbanization in Shanghai (Ⅵ): Community diversity and its structural characteristics of Shanghai Green Belt [J]. Journal of East China Normal University(Natural Sc, 2011, 2011(4): 1-14,74. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||