1 |
FILIPPOV V. n-Lie algebras . Siberian Mathematical Journal, 1985, 26 (6): 126- 140.
|
2 |
BAI R P, WU Y. Constructions of 3-Lie algebras. Linear Multilinear Algebra, 2015, 63 (11): 2171- 2186.
doi: 10.1080/03081087.2014.986121
|
3 |
AZCARRAGA J A, IZQUIERDO J M. n-ary algebras: A review with applications . Journal of Physics A: Mathematical and Theoretical, 2010, 43 (29): 293001.
doi: 10.1088/1751-8113/43/29/293001
|
4 |
SHENG Y, TANG R. Symplectic, product and complex structures on 3-Lie algebras. Journal of Algebra, 2018, 508, 256- 300.
doi: 10.1016/j.jalgebra.2018.05.005
|
5 |
BAGGER J, LAMBERT N. Gauge symmetry and supersymmetry of multiple M2-branes. Physical Review D: Particles Fields, 2008, 77 (6): 215- 240.
|
6 |
DEBELLIS J, SAEMANN C, SZABO R J. Quantized Nambu-Poisson manifolds and n-Lie algebras . Journal of Mathematical Physics, 2010, 51 (12): 153- 306.
|
7 |
GUATAVSSON A. Algebraic structures on parallel M2 branes. Nuclear Physics B, 2009, 811 (1/2): 66- 76.
doi: 10.1016/j.nuclphysb.2008.11.014
|
8 |
NAMBU Y. Generalized Hamiltonian Dynamics. Physical Review D: Particles Fields, 1999, 7 (8): 2405- 2412.
|
9 |
TAKHTAJAN L. On foundation of the generalized Nambu mechanics. Communications in Mathematical Physics, 1994, 160 (2): 295- 315.
doi: 10.1007/BF02103278
|
10 |
GAUTHERON P. Some remarks concerning Nambu mechanics. Letters in Mathematical Physics, 1996, 37 (1): 103- 116.
doi: 10.1007/BF00400143
|
11 |
BAI R P, BAI C M, WANG J X. Realizations of 3-Lie algebras. Journal of Mathematical Physics, 2010, 51 (6): 063505.
doi: 10.1063/1.3436555
|
12 |
BAI R, LI Z H, WANG W D. Infinite-dimensional 3-Lie algebras and their connections to Harish-Chandra modules. Frontiers of Mathematics in China, 2017, 12 (3): 515- 530.
doi: 10.1007/s11464-017-0606-7
|
13 |
KASYMOV S M. Theory of n-Lie algebras . Algebra and Logic, 1987, 26 (3): 155- 166.
doi: 10.1007/BF02009328
|
14 |
LIU J, MAKHLOUF A, SHENG Y. A new approach to representations of 3-Lie algebras and abelian extensions. Algebra Representation Theory, 2017, 20, 1415- 1431.
doi: 10.1007/s10468-017-9693-0
|