1 |
FOSTER N M, HUDSON M D, BRAY S, et al. Intertidal mudflat and saltmarsh conservation and sustainable use in the UK: A review. Journal of Environmental Management, 2013, 126 (4): 96- 104.
|
2 |
陈思明. 粉砂淤泥质潮滩表层沉积物侵蚀特性探讨 [D]. 上海: 华东师范大学, 2018.
|
3 |
杨世伦. 海岸环境和地貌过程导论 [M]. 北京: 海洋出版社, 2003: 1-2.
|
4 |
时钟, 陈吉余, 虞志英. 中国淤泥质潮滩沉积研究的进展. 地球科学进展, 1996, 11 (6): 37- 44.
|
5 |
FAGHERAZZI S, CARNIELLO L, D’ALPAOS L, et al. Critical bifurcation of shallow microtidal landforms in tidal flats and salt marshes. Proceedings of the National Academy of Sciences, 2006, 103 (22): 8337- 8341.
|
6 |
童春富. 长江河口潮间带盐沼植被分布区及邻近光滩鱼类组成特征. 生态学报, 2012, 32 (20): 6501- 6510.
|
7 |
KIRWAN M L, MEGONIGAL J P. Tidal wetland stability in the face of human impacts and sea-level rise. Nature, 2013, 504 (7478): 53- 60.
|
8 |
姜翠玲, 谢向前. 三沙湾滩涂的生态服务功能价值评估 [C]//任立良. 环境变化与水安全——第五届中国水论坛论文集. 南京: 中国水利水电出版社, 2007: 326-329.
|
9 |
任璘婧, 李秀珍, 杨世伦, 等. 崇明东滩盐沼植被变化对滩涂湿地促淤消浪功能的影响. 生态学报, 2014, 34 (12): 3350- 3358.
|
10 |
MARENAREN D, YANG S L, HE Q. The impact of silt trapping in large reservoirs on downstream morphology: The Yangtze River. Ocean Dynamics, 2013, 63 (6): 691- 707.
|
11 |
LI G, ZHUANG K, WEI H. Sedimentation in the Yellow River delta Part Ⅲ: Seabed erosion and diapirism in the abandoned subaqueous delta lobe. Marine Geology, 2000, 168 (1/2/3/4): 129- 144.
|
12 |
MURRAY N J, PHINN S R, DEWITT M, et al. The global distribution and trajectory of tidal flats. Nature, 2019, 565 (7738): 222- 225.
|
13 |
HOWES N C, FITZGERALD D M, HUGHES Z J, et al. Hurricane-induced failure of low salinity wetlands. Proceedings of the National Academy of Sciences, 2010, 107 (32): 14014- 14019.
|
14 |
林峰竹, 王慧, 张建立, 等. 中国沿海海岸侵蚀与海平面上升探析. 海洋开发与管理, 2015, 32 (6): 16- 21.
|
15 |
朱文谨, 王娜, 赵其灏, 等. 1984—2019年江苏中部淤泥质海岸线淤蚀变化特征分析. 江苏海洋大学学报(自然科学版), 2020, 29 (2): 58- 63.
|
16 |
GRABOWSKI R C, DROPPO I G, WHARTON G. Erodibility of cohesive sediment: The importance of sediment properties. Earth Science Reviews, 2011, 105 (3/4): 101- 120.
|
17 |
HOUWING E J. Determination of the critical erosion threshold of cohesive sediments on intertidal mudflats along the Dutch Wadden Sea Coast. Estuarine Coastal & Shelf Science, 1999, 49 (4): 545- 555.
|
18 |
BALE A J, WIDDOWS J, HARRIS C B, et al. Measurements of the critical erosion threshold of surface sediments along the Tamar Estuary using a mini-annular flume. Continental Shelf Research, 2006, 26 (10): 1206- 1216.
|
19 |
TAKI K. Critical shear stress for cohesive sediment transport. Proceedings in Marine Science, 2001, 3 (6): 53- 61.
|
20 |
时钟. 河口海岸细颗粒泥沙物理过程 [M]. 上海: 上海交通大学出版社, 2013: 334.
|
21 |
宋敬泰. 黄河三角洲岸滩沉积物临界侵蚀剪应力研究 [D]. 山东 青岛: 中国海洋大学, 2009.
|
22 |
WANG Y B. Effects of physical properties and rheological characteristics on critical shear stress of fine sediments [D]. Atlanta: Georgia Institute of Technology, 2013.
|
23 |
陈思明, 王宪业, 孙健伟, 等. 粉砂淤泥质潮滩表层沉积物可侵蚀性研究 [J]. 泥沙研究. 2020, 45(1): 45-51.
|
24 |
MORGAN R, RICKSON R J. Slope Stabilization and Erosion Control: A Bioengineering Approach [M]. London: Taylor & Francis, 1995: 274.
|
25 |
赵广琦, 张利权, 梁霞. 芦苇与入侵植物互花米草的光合特性比较. 生态学报, 2005, 25 (7): 1604- 1611.
|
26 |
高占国, 张利权. 应用间接排序识别盐沼植被的光谱特征: 以崇明东滩为例. 植物生态学报, 2006, 30 (2): 252- 260.
|
27 |
黄华梅, 张利权. 上海九段沙互花米草种群动态遥感研究. 植物生态学报, 2007, 31 (1): 75- 82.
|
28 |
李行, 周云轩, 况润元. 上海崇明东滩岸线演变分析及趋势预测. 吉林大学学报(地球科学版), 2010, 40 (2): 417- 424.
|
29 |
袁代亮, 何青, 王宪业, 等. 长江口潮滩沉积物抗剪强度分析. 泥沙研究, 2013, (2): 9- 15.
|
30 |
孟蕾. 基于多光谱影像的长江口典型盐沼植被参数遥感定量反演 [D]. 上海: 华东师范大学, 2020.
|
31 |
严格. 崇明东滩湿地盐沼植被生物量及碳储量分布研究 [D]. 上海: 华东师范大学, 2014.
|
32 |
胡梦瑶. 崇明东滩潮间带前沿植被与泥沙沉积协同动态研究 [D]. 上海: 华东师范大学, 2020.
|
33 |
吴绪旭. 长江口现代潮滩粒度和TS/TOC分布特征及其沉积微相指示意义 [D]. 上海: 华东师范大学, 2013.
|
34 |
茅志昌, 虞志英, 徐海根. 上海潮滩研究 [M]. 上海: 华东师范大学出版社, 2014: 1-2.
|
35 |
蒋丰佩. 异质潮滩水沙输运研究 [D]. 上海: 华东师范大学, 2012.
|
36 |
FOLK R L, WARD W C. Brazos River bar: A study in the significance of grain size parameters. Journal of Sedimentary Research, 1957, 27 (1): 3- 26.
|
37 |
LIU X, ZHENG J, ZHANG H, et al. Sediment critical shear stress and geotechnical properties along the modern Yellow River Delta, China. Marine Georesources & Geotechnology, 2018, 36 (8): 875- 882.
|
38 |
TOLHURST T J, BLACK K S, SHAYLER S A, et al. Measuring the in situ erosion shear stress of intertidal sediments with the Cohesive Strength Meter (CSM). Estuarine Coastal & Shelf Science, 1999, 49 (2): 281- 294.
|
39 |
CHEN Y, THOMPSON C, COLLINS M B. Saltmarsh creek bank stability: Biostabilisation and consolidation with depth. Continental Shelf Research, 2012, 35 (1): 64- 74.
|
40 |
LEDDEN M V, KESTEREN W G M V, WINTERWERP J C. A classification for erosion behaviour of sand-mud mixtures. Continental Shelf Research, 2004, 24 (1): 1- 11.
|
41 |
LICK W, JIN L, GAILANI J. Initiation of movement of quartz particles. Journal of Hydraulic Engineering, 2004, 130 (8): 755- 761.
|
42 |
SIMON A, COLLISON A. Scientific basis for streambank stabilization using riparian vegetation[C]//Proceedings of the 7th Federal Interagency Sedimentation Conference, Reno Nevada, 2001: V47–V54.
|
43 |
李国荣, 胡夏嵩, 毛小青, 等. 青藏高原东北部黄土区草本与灌木植物根-土相互作用力学机理及其模型研究. 中国水土保持, 2013, (7): 37- 41.
|
44 |
嵇晓雷. 基于植被根系分布形态的生态边坡稳定性研究 [D]. 南京: 南京林业大学, 2013.
|
45 |
曹波, 曹志东, 王黎明, 等. 植物根系固土作用研究进展. 水土保持应用技术, 2009, (1): 26- 28.
|
46 |
张豆豆, 梁新华, 王俊. 植物根系分泌物研究综述. 中国农学通报, 2014, 30 (35): 7.
|