1 |
LI X, YONG T, WEI Z, et al. Reversing insufficient photothermal therapy-induced tumor relapse and metastasis by regulating cancer-associated fibroblasts. Nature Communications, 2022, 13 (1): 2794- 2813.
|
2 |
CHEN C, PAN Y, LI D, et al. An intramolecular charge transfer-forster resonance energy transfer integrated unimolecular platform for two-photon ratiometric fluorescence sensing of methionine sulfoxide reductases in live-neurons and mouse brain tissues. Analytical Chemistry, 2022, 94 (16): 6289- 6296.
|
3 |
MEI Y, LIU Z, LIU M, et al. Two-photon fluorescence imaging and ratiometric quantification of mitochondrial monoamine oxidase-A in neurons. Chemical Communications, 2022, 58 (46): 6657- 6660.
|
4 |
WANG H, XUE K F, YANG Y, et al. In situ hypoxia-induced supramolecular perylene diimide radical anions in tumors for photothermal therapy with improved specificity. Journal of the American Chemical Society, 2022, 144 (5): 2360- 2367.
|
5 |
LIU S, ZHOU X, ZHANG H, et al. Molecular motion in aggregates: Manipulating tict for boosting photothermal theranostics. Journal of the American Chemical Society, 2019, 141 (13): 5359- 5368.
|
6 |
XU G, LI C, CHI C, et al. A supramolecular photosensitizer derived from an Arene-Ru(Ⅱ) complex self-assembly for NIR activated photodynamic and photothermal therapy. Nature Communications, 2022, 13 (1): 3064.
|
7 |
YOU C, LI Y, DONG Y, et al. Low-temperature trigger nitric oxide nanogenerators for enhanced mild photothermal therapy. ACS Biomaterials Science & Engineering, 2020, 6 (3): 1535- 1542.
|
8 |
ZHANG D, WU T, QIN X, et al. Intracellularly generated immunological gold nanoparticles for combinatorial photothermal therapy and immunotherapy against tumor. Nano Letters, 2019, 19 (9): 6635- 6646.
|
9 |
FU J J, ZHANG J Y, LI S P, et al. CuS nanodot-loaded thermosensitive hydrogel for anticancer photothermal therapy. Molecular Pharmaceutics, 2018, 15 (10): 4621- 4631.
|
10 |
ZHOU T, XIE S, ZHOU C, et al. All-in-one second near-infrared light-responsive drug delivery system for synergistic chemo-photothermal therapy. ACS Applied Bio Materials, 2022, 5 (8): 3841- 3849.
|
11 |
LEI S, ZHAO F, ZHANG J, et al. Metallo-dye-based supramolecular nanoassembly for NIR-Ⅱ cancer theranostics. Analytical Chemistry, 2022, 94 (23): 8399- 8408.
|
12 |
WU F, LU Y, MU X, et al. Intriguing H-aggregates of heptamethine cyanine for imaging-guided photothermal cancer therapy. ACS Applied Materials & Interfaces, 2020, 12 (29): 32388- 32396.
|
13 |
ZHANG W, LIN W, LI C, et al. Rational design of BODIPY-diketopyrrolopyrrole conjugated polymers for photothermal tumor ablation. ACS Applied Materials & Interfaces, 2019, 11 (36): 32720- 32728.
|
14 |
WU C, HUANG X, TANG Y, et al. Pyrrolopyrrole aza-BODIPY near-infrared photosensitizer for dual-mode imaging-guided photothermal cancer therapy. Chemical Communications, 2019, 55 (6): 790- 793.
|
15 |
ZOU Q, ABBAS M, ZHAO L, et al. Biological photothermal nanodots based on self-assembly of peptide-porphyrin conjugates for antitumor therapy. Journal of the American Chemical Society, 2017, 139 (5): 1921- 1927.
|
16 |
HU H, WANG H, YANG Y, et al. A bacteria-responsive porphyrin for adaptable photodynamic/photothermal therapy. Angewandte Chemie-International Edition, 2022, 61 (23): e202200799.
|
17 |
DUAN X, ZHANG Q, JIANG Y, et al. Semiconducting polymer nanoparticles with intramolecular motion-induced photothermy for tumor phototheranostics and tooth root canal therapy. Advanced Materials, 2022, 34 (17): e2200179.
|
18 |
CHEN P, MA Y, ZHENG Z, et al. Facile syntheses of conjugated polymers for photothermal tumour therapy. Nature Communications, 2019, 10 (1): 1192.
|
19 |
ZHANG Q, TIAN H. Effective integrative supramolecular polymerization. Angewandte Chemie-International Edition, 2014, 53 (40): 10582- 10584.
|
20 |
TANG B, LI W L, CHANG Y, et al. A supramolecular radical dimer: High-efficiency NIR-Ⅱ photothermal conversion and therapy. Angewandte Chemie-International Edition, 2019, 58 (43): 15526- 15531.
|
21 |
ZIGANSHINA A Y, KO Y H, JEON W S, et al. Stable π-dimer of a tetrathiafulvalene cation radical encapsulated in the cavity of cucurbit[8]uril. Chemical Communications, 2004, (7): 806- 807.
|
22 |
LI D, FENG Z, HAN Y, et al. Time-resolved encryption via a kinetics-tunable supramolecular photochromic system . Advanced Science, 2022, 9 (6): e2104790.
|
23 |
LI D, HAN Y, JIANG Y, et al. Achieving adjustable multifunction based on host-guest interaction-manipulated reversible molecular conformational switching. ACS Applied Materials & Interfaces, 2022, 14 (1): 1807- 1816.
|
24 |
ZHANG Q W, LI D, LI X, et al. Multicolor photoluminescence including white-light emission by a single host-guest complex. Journal of the American Chemical Society, 2016, 138 (41): 13541- 13550.
|