| 1 | 
																						 
											张燕东, 田磊, 李茂清, 等. 智能巡检机器人系统在火力发电行业的应用研发及示范. 中国电力, 2017, 50 (10): 1- 7.
																						 | 
										
																													
																							| 2 | 
																						 
											李梁. 变电站巡检机器人视频监控系统设计与实现 [D]. 上海: 上海交通大学, 2013.
																						 | 
										
																													
																							| 3 | 
																						 
											赵小鱼, 徐正飞, 付渊. 一种适用于智能变电站巡检机器人的异物检测算法研究. 现代电子技术, 2015(10), 132- 135.
																						 | 
										
																													
																							| 4 | 
																						 
											殷强, 张应忠, 陆滔, 等. 基于图像处理与SNMP的通信状态告警系统设计与实现. 通信技术, 2019, 52 (8): 2060- 2066.
																						 | 
										
																													
																							| 5 | 
																						 
											丁四海, 刘玉雪, 路林吉. 数字图像处理技术在电气控制柜开关状态识别中的应用. 微型电脑应用, 2013, 30 (5): 39- 40.
																						 | 
										
																													
																							| 6 | 
																						 
											杨光, 周鹏举, 张宋彬, 等. 基于卷积神经网络的变电站巡检机器人图像识别 [J]. 软件, 2017, 38(12): 190-192.
																						 | 
										
																													
																							| 7 | 
																						 
											HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016: 770-778.
																						 | 
										
																													
																							| 8 | 
																						 
											LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86 (11): 2278- 2324.
																						 | 
										
																													
																							| 9 | 
																						 
											KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60 (6): 84- 90.
																						 | 
										
																													
																							| 10 | 
																						 
											ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks [C]// European Conference on Computer Vision, ECCV 2014, Lecture Notes in Computer Science, vol 8689. Cham: Springer, 2014: 818-833.
																						 | 
										
																													
																							| 11 | 
																						 
											SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. (2015-04-10)[2021-07-02]. https://arxiv.org/abs/1409.1556.
																						 | 
										
																													
																							| 12 | 
																						 
											SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions [C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2015: 1-9. DOI: 10.1109/CVPR.2015.7298594.
																						 | 
										
																													
																							| 13 | 
																						 
											GOODFELLOW I, BENGIO Y, COURVILLE A, et al. Deep Learning [M]. Cambridge, MA, USA: MIT Press, 2016: 281-283.
																						 | 
										
																													
																							| 14 | 
																						 
											IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift [C]// Proceedings of the 32nd International Conference on International Conference on Machine Learning-Volume 37. JMLR, 2015: 448-456.
																						 | 
										
																													
																							| 15 | 
																						 
											LIN M, CHEN Q, YAN S C. Network in network [EB/OL]. (2014-03-04)[2012-07-02]. https://arxiv.org/abs/1312.4400.
																						 | 
										
																													
																							| 16 | 
																						 
											HOWARD A G, ZHU M H, CHEN B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications [EB/OL]. (2017-04-17)[2021-07-02]. https://arxiv.org/abs/1704.04861.
																						 |