Journal of East China Normal University(Natural Science) ›› 2023, Vol. 2023 ›› Issue (6): 108-118.doi: 10.3969/j.issn.1000-5641.2023.06.010
• Life Sciences • Previous Articles
Shumin QIANG(), Cheng LYU, Fei XU*()
Received:
2022-01-11
Accepted:
2022-05-11
Online:
2023-11-25
Published:
2023-11-23
Contact:
Fei XU
E-mail:731377262@qq.com;feixu@jiangnan.edu.cn
CLC Number:
Shumin QIANG, Cheng LYU, Fei XU. Mechanism of osteogenesis imperfecta based on collagen heterotrimer[J]. Journal of East China Normal University(Natural Science), 2023, 2023(6): 108-118.
Table 1
Average of parameters changes in collagen"
Type | ΔTm/ ℃ | Δ摆动角/ (°) | Δ面积a/ ?2 | Δrisea/ ? | Δslidea/ ? | Δshifta/ ? | Δrolla/ (o) | Δtilta/ (o) | Δtwista/ (o) | ΔEHBb | ΔEDSb | Tilt-Twistc | |
倾斜角/(°) | 长短轴比 | ||||||||||||
a'bc | 15.65 | 40 | 0.12 | –0.4±0.6 | 0.4±0.4 | –0.5±0.7 | –1.43±1.03 | 2.73±2.43 | –4.00±2.81 | 0.14±0.17 | 17.39±16.70 | 43 | 2.29 |
ab'c | 15.63 | 38 | 0.17 | –0.4±0.4 | –0.2±1.1 | –0.6±1.1 | –1.93±2.64 | 2.68±2.54 | –4.62±4.93 | 0.16±0.45 | 30.18±22.86 | 42 | 1.65 |
abc' | 14.77 | 41 | 0.11 | –0.5±0.2 | 0.4±1.1 | –0.9±0.3 | –2.81±1.42 | 4.18±1.47 | –7.12±2.83 | 0.10±0.29 | 33.84±23.70 | 29 | 1.52 |
a'b'c | 53 | 0.35 | –0.5±0.4 | –0.3±1.0 | –0.6±1.1 | –2.23±2.29 | 3.61±3.40 | –5.79±5.01 | 0.31±0.39 | 37.25±25.78 | |||
a'bc' | 47 | 0.40 | –0.7±0.1 | –0.0±0.3 | –1.1±0.1 | –3.36±1.55 | 4.56±1.23 | –7.98±2.01 | 0.16±0.31 | 39.93±18.95 | |||
ab'c' | 49 | 0.31 | –0.6±0.2 | –0.5±0.9 | –0.7±0.3 | –2.68±1.60 | 5.24±2.21 | –8.81±3.57 | 0.34±0.35 | 42.03.±32.33 | |||
a'b'c' | 54 | 0.63 | –0.4±0.3 | 0.9±1.2 | –0.4±0.5 | –3.00±2.25 | 4.81±0.75 | –8.02±2.89 | 0.35±0.64 | 43.67±29.22 |
1 | MYLLYHARJU J, KIVIRIKKO K I.. Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet, 2004, 20 (1): 33- 43. |
2 | SHOULDERS M D, RAINES R T.. Collagen structure and stability. Annual Review of Biochemistry, 2009, 78, 929- 958. |
3 | HEINO J.. The collagen family members as cell adhesion proteins. Bioessays, 2007, 29 (10): 1001- 1010. |
4 | BRINCKMANN J. Collagens at a Glance [M]// BRINCKMANN J, NOTBOHM H, MÜLLER P K. Collagen: Primer in Structure, Processing and Assembly. Berlin: Springer, 2005: 1-6. |
5 | RAMACHANDRAN G N, SASISEKHARAN V.. Structure of Collagen. Nature, 1961, 190 (4780): 1004- 1005. |
6 | RICH A, CRICK F H C.. The molecular structure of collagen. Journal of Molecular Biology, 1961, 3 (5): 483- 506. |
7 | MYLLYHARJU J, KIVIRIKKO K I.. Collagens and collagen-related diseases. Annals of Medicine, 2001, 33 (1): 7- 21. |
8 | KUIVANIEMI H, TROMP G, PROCKOP D J.. Mutations in fibrillar collagens (types Ⅰ, Ⅱ, Ⅲ, and Ⅹ Ⅰ), fibril-associated collagen (type Ⅰ Ⅹ), and network-forming collagen (type Ⅹ) cause a spectrum of diseases of bone, cartilage, and blood vessels. Human Mutation, 1997, 9 (4): 300- 315. |
9 | MARINI J C, FORLINO A, CABRAL W A, et al.. Consortium for osteogenesis imperfecta mutations in the helical domain of type Ⅰ collagen: Regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Human Mutation, 2007, 28 (3): 209- 221. |
10 | BECK K, CHAN V C, SHENOY N, et al.. Destabilization of osteogenesis imperfecta collagen-like model peptides correlates with the identity of the residue replacing glycine. Proceedings of the National Academy of Sciences, 2000, 97 (8): 4273- 4278. |
11 | BAUM J, BRODSKY B.. Structural biology: Modelling collagen diseases. Nature, 2008, 453 (7198): 998. |
12 | BRODSKY B, PERSIKOV A V.. Molecular structure of the collagen triple helix. Advances in Protein Chemistry and Structural Biology, 2005, 70, 301- 339. |
13 | FIELDS G B.. A model for interstitial collagen catabolism by mammalian collagenases. Journal of Theoretical Biology, 1991, 153 (4): 585- 602. |
14 | OKUYAMA K, HONGO C, FUKUSHIMA R, et al.. Crystal structures of collagen model peptides with Pro-Hyp-Gly repeating sequence at 1.26 A resolution: implications for proline ring puckering. Biopolymers, 2004, 76 (5): 367- 377. |
15 | GOODMAN M, BHUMRALKAR, JEFFERSON E A, et al.. Collagen mimetics. Biopolymers, 1998, 47 (2): 127- 142. |
16 | BAUM J, BRODSKY B. Folding of peptide models of collagen and misfolding in disease [J]. Current Opinion in Structural Biology, 1999, 9(1): 122-128. |
17 | BELLA J.. A new method for describing the helical conformation of collagen: Dependence of the triple helical twist on amino acid sequence. Journal of Structural Biology, 2010, 170 (2): 377- 391. |
18 | OKUYAMA K.. Revisiting the molecular structure of collagen. Connective Tissue Research, 2008, 49 (5): 299- 310. |
19 | PERSIKOV A V, RAMSHAW J A, KIRKPATRICK A, et al.. Amino acid propensities for the collagen triple-helix. Biochemistry, 2000, 39 (48): 14960- 14967. |
20 | PERSIKOV A V, RAMSHAW J A M, BRODSKY B.. Prediction of collagen stability from amino acid sequence. Journal of Biological Chemistry, 2005, 280 (19): 19343- 19349. |
21 | RAMSHAW J A M, SHAH N K, BRODSKY B.. Gly-X-Y tripeptide frequencies in collagen: A context for host–guest triple-helical peptides. Journal of Structural Biology, 1998, 122 (1): 86- 91. |
22 | MANJIRI, BHATE, XIN, et al.. Folding and conformational consequences of glycine to alanine replacements at different positions in a collagen model peptide. Biochemistry, 2002, 41 (20): 6539- 6547. |
23 | BODIAN D L, MADHAN B, BRODSKY B, et al.. Predicting the clinical lethality of osteogenesis imperfecta from collagen glycine mutations. Biochemistry, 2008, 47 (19): 5424- 5432. |
24 | BERG R A, PROCKOP D J.. The thermal transition of a non-hydroxylated form of collagen. Evidence for a role for hydroxyproline in stabilizing the triple-helix of collagen. Biochemical and Biophysical Research Communications, 1973, 52 (1): 115- 120. |
25 | BELLA J, EATON M, BRODSKY B, et al.. Crystal and molecular structure of a collagen-like peptide at 1.9 Å resolution. Science, 1994, 266 (5182): 75- 81. |
26 | LI Y, BRODSKY B, BAUM J.. NMR conformational and dynamic consequences of a gly to ser substitution in an osteogenesis imperfecta collagen model peptide. Journal of Biological Chemistry, 2009, 284 (31): 20660- 20667. |
27 | O'LEARY L E R, FALLAS J A, HARTGERINK J D.. Positive and negative design leads to compositional control in AAB collagen heterotrimers. Journal of The American Chemical Society, 2011, 133 (14): 5432- 5443. |
28 | XIAO J, SUN X, MADHAN B, et al.. NMR studies demonstrate a unique AAB composition and chain register for a heterotrimeric type Ⅳ collagen model peptide containing a natural interruption site*. Journal of Biological Chemistry, 2015, 290 (40): 24201- 24209. |
29 | JALAN A A, HARTGERINK J D.. Simultaneous control of composition and register of an AAB-type collagen heterotrimer. Biomacromolecules, 2013, 14 (1): 179- 185. |
30 | XU F, ZAHID S, SILVA T, et al.. Computational design of a collagen A: B: C-type heterotrimer. Journal of the American Chemical Society, 2011, 133 (39): 15260- 15263. |
31 | CLEMENTS K A, ACEVEDO-JAKE A M, WALKER D R, et al.. Glycine substitutions in collagen heterotrimers alter triple helical assembly. Biomacromolecules, 2017, 18 (2): 617- 624. |
32 | ACEVEDO-JAKE A M, CLEMENTS K A, HARTGERINK J D.. Synthetic, register-specific, AAB heterotrimers to investigate single point Glycine mutations in osteogenesis imperfecta. Biomacromolecules, 2016, 17 (3): 914- 921. |
33 | PARK S, KLEIN T E, PANDE V S.. Folding and misfolding of the collagen triple helix: Markov analysis of molecular dynamics simulations. Biophysical Journal, 2007, 93 (12): 4108- 4115. |
34 | MOONEY S D.. Structural models of osteogenesis imperfecta-associated variants in the COL1A1 gene. Molecular & Cellular Proteomics, 2002, 1 (11): 868- 875. |
35 | BODIAN D L, RADMER R J, HOLBERT S, et al.. Molecular dynamics simulations of the full triple helical region of collagen type I provide an atomic scale view of the protein's regional heterogeneity. Pacific Symposium on Biocomputing, 2011, 193- 204. |
36 | FEI X, ZHENG H, CLAUVELIN N, et al. Parallels between DNA and collagen - Comparing elastic models of the double and triple helix [J]. Scientific Reports, 2017, 7(1): 12802. |
37 | ZHENG H, LU C, LAN J, et al.. How electrostatic networks modulate specificity and stability of collagen. Proc Natl Acad Sci USA, 2018, 115 (24): 6207- 6212. |
38 | LINDORFF-LARSEN K, PIANA S, PALMO K, et al.. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins: Structure, Function, and Bioinformatics, 2010, 78 (8): 1950- 1958. |
39 | PRONK S, PÁLL S, SCHULZ R, et al.. GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics, 2013, 29 (7): 845- 854. |
40 | ZHENGWEI P, EWIG C S, HWANG M J, et al.. Comparison of simple potential functions for simulating liquid water. The Journal of Physical Chemistry A, 1997, 101, 7243- 7252. |
41 | DARDEN T A, YORK D M, PEDERSEN L G.. Particle mesh Ewald-An N·log(N) method for Ewald sums in large systems. Journal of Computational Chemistry, 1993, 18 (12): 1463- 1472. |
42 | BERENDSEN H J C P, POSTMA J P M V, GUNSTEREN W F V, et al.. Molecular-dynamics with coupling to an external bath. The Journal of Chemical Physics, 1984, 81, 3684. |
43 | OLSON W K, BANSAL M, BURLEY S K, et al.. A standard reference frame for the description of nucleic acid base-pair geometry. Journal of Molecular Biology, 2001, 313 (1): 229- 237. |
44 | OLSON W K.. DNA sequence-dependent deformability deduced from protein-DNA crystal complexes. Proceedings of the National Academy of Sciences, 1998, 95 (19): 11163- 11168. |
45 | LUZAR A, CHANDLER D.. Effect of environment on hydrogen bond dynamics in liquid water. Physrevlett, 1996, 76 (6): 928. |
46 | GORDON D B, MARSHALL S A, MAYO S L.. Energy functions for protein design. Current Opinion in Structural Biology, 1999, 9 (4): 509- 513. |
47 | FU I, CASE D A, BAUM J.. Dynamic water-mediated hydrogen bonding in a collagen model peptide. Biochemistry, 2015, 54 (39): 6029- 6037. |
48 | BABCOCK M S, OLSON W K.. The effect of mathematics and coordinate system on comparability and "dependencies" of nucleic acid structure parameters . Journal of Molecular Biology, 1994, 237 (1): 98- 124. |
49 | GAJKO-GALICKA A.. Mutations in type Ⅰ collagen genes resulting in osteogenesis imperfecta in humans. Acta Biochimica Polonica, 2002, 49 (2): 433- 441. |
50 | KUIVANIEMI H, TROMP G, PROCKOP D J.. Mutations in collagen genes: Causes of rare and some common diseases in humans. Faseb Journal, 1991, 5 (7): 2052- 2060. |
51 | WALLACE J M, ERICKSON B, LES C M, et al.. Distribution of type Ⅰ collagen morphologies in bone: Relation to estrogen depletion. Bone, 2010, 46 (5): 1349- 1354. |
52 | LI T, CHANG S W, RODRIGUEZ-FLOREZ N, et al.. Studies of chain substitution caused sub-fibril level differences in stiffness and ultrastructure of wildtype and oim/oim collagen fibers using multifrequency-AFM and molecular modeling. Biomaterials, 2016, 107, 15- 22. |
53 | XIAO J, MADHAN B, LI Y, et al.. Osteogenesis imperfecta model peptides: Incorporation of residues replacing Gly within a triple helix achieved by renucleation and local flexibility. Biophysical Journal, 2011, 101 (2): 449- 458. |
54 | XIAO J, CHENG H, SILVA T, et al.. Osteogenesis imperfecta missense mutations in collagen: Structural consequences of a Glycine to alanine replacement at a highly charged site. Biochemistry, 2011, 50 (50): 10771- 10780. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||