1 |
BERNSTEIN P A, GOODMAN N.. Concurrency control in distributed database systems. ACM Computing Surveys (CSUR), 1981, 13 (2): 185- 221.
|
2 |
TIAN B, HUANG J, MOZAFARI B, et al.. Contention-aware lock scheduling for transactional databases. Proceedings of the VLDB Endowment, 2018, 11 (5): 648- 62.
|
3 |
THOMASIAN A, RYU I K.. Performance analysis of two-phase locking. IEEE transactions on software engineering, 1991, (5): 386.
|
4 |
YU X, BEZERRA G, PAVLO A, et al.. Staring into the abyss: An evaluation of concurrency control with one thousand cores. Proceedings of the VLDB Endowment, 2014, (3): 209- 220.
|
5 |
JONES E P, ABADI D J, MADDEN S. Low overhead concurrency control for partitioned main memory databases [C]// Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data. 2010: 603-614
|
6 |
GUPTA R, HARITSA J, RAMAMRITHAM K. Revisiting commit processing in distributed database systems [C]// Proceedings of the 1997 ACM SIGMOD international conference on Management of data. ACM SIGMOD Record, 1997: 486-497.
|
7 |
GUO Z, WU K, YAN C, et al. Releasing locks as early as you can: Reducing contention of hotspots by violating two-phase locking [C]// Proceedings of the 2021 International Conference on Management of Data. 2021: 658-670.
|
8 |
ALTMEYER S, SUNDHARAM S M, NAVET N. The case for FIFO real-time scheduling [R]. Luxemburg: Universität Augsburg, 2016.
|
9 |
HUANG J, MOZAFARI B, SCHOENEBECK G, et al. A top-down approach to achieving performance predictability in database systems [C]// Proceedings of the 2017 ACM International Conference on Management of Data. 2017: 745-758.
|
10 |
SHENG Y, TOMASIC A, ZHANG T, et al. Scheduling OLTP transactions via learned abort prediction [C]// Proceedings of the Second International Workshop on Exploiting Artificial Intelligence Techniques for Data Management, 2019.
|
11 |
WANG D, CAI P, QIAN W, et al. Predictive Transaction Scheduling for Alleviating Lock Thrashing [C]// Proceedings of the Database Systems for Advanced Applications: 25th International Conference, 2020, Jeju, South Korea. [S.l.]: Springer, 2020: 24–27.
|
12 |
WAGNER B, KOHN A, NEUMANN T. Self-tuning query scheduling for analytical workloads [C]// Proceedings of the 2021 International Conference on Management of Data. 2021: 1879-1891.
|
13 |
THOMSON A, DIAMOND T, WENG S-C, et al. Calvin: Fast distributed transactions for partitioned database systems [C]// Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data, Scottsdale, AZ.
|
14 |
PRASAAD G, CHEUNG A, SUCIU D. Handling highly contended OLTP workloads using fast dynamic partitioning [C]// Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, Portland, OR.
|
15 |
QADAH T M, SADOGHI M. Quecc: A queue-oriented, control-free concurrency architecture [C]// Proceedings of the 19th International Middleware Conference. 2018.
|
16 |
YAO C, AGRAWAL D, CHEN G, et al.. Exploiting single-threaded model in multi-core in-memory systems. IEEE Transactions on Knowledge and Data Engineering, 2016, 28 (10): 2635- 2650.
|
17 |
LI J, LU Y, WANG Q, et al. AlNiCo: SmartNIC-accelerated contention-aware request scheduling for transaction processing [C]// Proceedings of the 2022 USENIX Annual Technical Conference (USENIX ATC 22), Carlsbad, CA.
|
18 |
WENG S, WANG Q, QU L, et al.. Lauca: A workload duplicator for benchmarking transactional database performance. IEEE Transactions on Knowledge and Data Engineering, 2024, 36 (7): 3180- 3194.
|
19 |
DIFALLAH D E, PAVLO A, CURINO C, et al.. Oltp-bench: An extensible testbed for benchmarking relational databases. Proceedings of the VLDB Endowment, 2013, 7 (4): 277- 288.
|
20 |
TPC. TPC-C benchmark [EB/OL]. [2024-05-29]. http://www.tpc.org/tpcc/.
|
21 |
BAINS S, HUANG J. Contention-aware transaction scheduling arriving in InnoDB to boost performance [EB/OL]. (2017-11-05)[2024-05-29]. https://dev.mysql.com/blog-archive/contention-aware-transaction-scheduling-arriving-in-innodb-to-boost-performance.
|