[1]VAXEVANIDOU K, PAPASSIOPI N, PASPALIARIS I. Removal of heavy metals and arsenic from contaminated soils using bioremediation and chelant extraction techniques[J]. Chemosphere, 2008, 70:1329-1337.[2]PENG J F, SONG Y H, YUAN P, et al. The remediation of heavy metals contaminated sediment[J]. J Hazard Mater, 2009,161:633-640.[3]PILON-SMITS E. Phytoremediation[J]. Annu Rev Plant Biol, 2005, 56:15-39.[4]SALT D E, SMITH R D, RASKIN I. Phytoremediation[J]. Annu Rev Plant Physiol Plant Mol Biol, 1998, 49: 643-668.[5]胡智勇, 陆开宏, 梁晶晶. 根际微生物在污染水体植物修复中的作用[J]. 环境科学与技术, 2010, 33(5):75-80.[6]DWIVEDI S, MISHRA A, KUMAR A, et al. Bioremediation potential of genus Portulaca L. collected from industrial areas in Vadodara, Gujarat, India[J]. Clean Techn Environ Policy, 2011:1-6.[7]GLICK B R, PATTEN C L, HOLGUIN G, et al. Biochemical and Genetic Mechanisms used by Plant Growth Promoting Bacteria[M]. London: Imperial College Press, 1999.[8]LI W C, YE Z H, WONG M H. Effects of bacteria on enhanced metal uptake of the Cd/Zn-hyperaccumulating plant, Sedum alfredii[J]. J Exp Bot, 2007,58:4173-4182.[9]JIANG C Y, SHENG X F, QIAN M, et al. Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metalpolluted soil[J]. Chemosphere, 2008,72:157-164.[10] RAJKUMAR M, FREITAS H. Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals[J]. Chemosphere, 2008, 71:834-842.[11] XIONG J, HE Z, LIU D. The role of bacteria in the heavy metals removal and growth of Sedum alfredii Hance in an aqueous medium[J]. Chemosphere, 2008,70:489-494.[12] KHAN M S, ZAIDI A, WANI P A, et al. Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils[J]. Environ Chem Lett, 2009(7):1-19.[13] 程先富, 朱华, 郝李霞, 等. 丘陵山区土壤阳离子交换量(CEC)的空间分布预测[J]. 应用与环境生物学报, 2008,14(4):484-487.[14] 鲍士旦.土壤农化分析[M]. 3版. 北京:中国农业出版社,2000.[15] TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of trace metals [J]. Anal Chem, 1979,51: 844-851.[16] CUNNINGHAM S D, BERTI W R, HUANG J W. Phytoremediation of contaminated soil[J]. Trend Biotechnol, 1995,13(9): 393-397.[17] MARSCHNER H, ROMHELD V. In vivo measurement of rootinduced pH changes at the soil-root interface: effect of plant species and nitrogen source[J]. Plant Physiol, 1983,111:241-251.[18] LEYVAL C, BERTHELIN J. Rhizodeposition and net release of soluble organic compounds by pine and beech seedlings inoculated with rhizobacteria and ectomycorrhizal fungi[J]. Biol Fertil Soils, 1993,15:259-267.[19] 徐卫红, 黄河, 王爱华, 等. 根系分泌物对土壤重金属活化及其机理研究进展[J]. 生态环境, 2006, 15(1):184-189.[20] 魏树和, 周启星, 王新. 一种新发现的镉超积累植物龙葵[J]. 环境科学, 2005,26(3):167-171.[21] GARBISU C, HERNANDEZ-ALLICA J, BARRUTIA O, et al. Phytoremediation: a technology using green plants to remove contaminants from polluted areas[J]. Rev Environ Health, 2002,17:75-90.[22] GUALA S D, VEGA F A, COVELO E F. Development of a model to select plants with optimum metal phytoextraction potential[J]. Environ Sci Pollut Res, 2011, 18(6): 997-1003.[23] LI Y M, CHANEY R L, ANGLE J S, et al. Phytoremediation of heavy metal contaminated soils[M]// WISE D L, TRANTOLO D J, CICHON E J, et al. Bioremediation of Contaminated Soils. New York: Marcel Dekker, 2000: 837-857.[24] LIANG H M, LIN T H, CHIOU J M, et al. Model evaluation of the phytoextraction potential of heavy metal hyperaccumulators and non-hyperaccumulators[J]. Environ Pollut,2009,157(6):1945-1952.[25] BLAYLOCK M J, SALT D E, DUSHENKOV S, et al. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents[J]. Environ Sci Technol, 1997,31:860-865.[26] CONESA H M, GARCI′A G, FAZ A′, et al. Dynamics of metal tolerant plant communities’ development in mine tailings from the Cartagena-La Unio’n Mining District (SE Spain) and their interest for further revegetation purposes[J]. Chemosphere, 2007,68:1180-1185. [27] 裴昕,郭智,李建勇,等.刈割对龙葵生长和富集镉的影响及其机理[J].上海交通大学学报,2007,25(2):125-129.[28] BAKER A J M, BROOKS R R. Terrestrial higher plants which hyperaccumulate metallic elements: A review of their distribution, ecology and phytochemistry[J]. Biorecov, 1989(1): 811-826.[29] BAKER A J M, BROOKS R R. Terrestrial higher plants which hyperaccumulate elements-a review of their distribution, ecology and phytochemistry[J]. Biorecovery, 1989(1):81-126.[30] KOVC〖DD(-*2〗〖KG*5〗ˇ〖DD)〗IK J, BAC〖DD(-*2〗〖KG*5〗ˇ〖DD)〗KOR M, KADUKOV J. Physiological responses of matricaria chamomilla to cadmium and copper excess [J]. Environmental Toxicology, 2008,23(1):123-130. [31] SALT D E, PRINCE R C, PICKERING I J, et al. Mechanisms of cadmium mobility and accumulation in Indian mustard [J]. Plant Physiol, 1995, 109(4): 1427-1433.[32] MARGESIN R, PAZA G A, KASENBACHER S. Characterization of bacterial communities at heavy-metal-contaminated sites[J]. Chemosphere, 2011,82:1583-1588.[33] 朱丽霞,章家恩,刘文高.根系分泌物与根际微生物相互作用研究综述[J].生态环境, 2003, 12(1): 102-105.[34] WHITFIELD SLUND M L, RUTTER A, REIMER K J, et al. The effects of repeated planting, planting density, and specific transfer pathways on PCB uptake by Cucurbita pepo grown in field conditions[J]. Science of the Total Environment, 2008, 405(1-3):14-25. |