Sufficient and necessary condition for the chromatic equivalence of a class of graphs
MA Hai-cheng 1,2, LI Sheng-gang 1
1. College of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710062, China;
2. Department of Mathematics, Qinghai University for Nationalities, Xining 810007, China
MA Hai-cheng, LI Sheng-gang. Sufficient and necessary condition for the chromatic equivalence of a class of graphs[J]. Journal of East China Normal University(Natural Sc, 2013, 2013(1): 1-6.
{1}CHIA G F. On the chromatic equivalence class of graphs[J]. DiscreteMath, 1998, 178: 15-23.{2}DOFG F M, TEO K L, LITTLE C H C, et al. Chromaticity of somefamilies of dense graphs[J]. Discrete Math, 2002, 258: 303-321.{3}LIU R Y. A new method to find chromatic polynomial of graph and itsapplications[J]. Kexue Tongbao, 1987, 32: 1508-1509 (In Chinese,English summary).{4}KORFHAGE R R. $\sigma$-polynomials and graph coloring[J]. J CombinTheory Ser B, 1978, 24: 137-153.{5}DONG F M, KOH K M, TEO K L. Chromatic Polynomials and Chromaticityof Graphs[M]. Singapore: World Scientific Publishing, 2005.{6}ZHAO H X, LI X L, ZHANG S G, et al. On the minimum real root of thepolynomial and chromatic uniqueness of graphs[J]. Discrete Math,2004, 281: 271-294.{7}MA H C, REN H Z. The chromatic equivalence classes of thecomplements of graphs with the minimum real roots of their adjointpolynomials greater than $-4$[J]. Discrete Math, 2008, 308:1830-1836.{8}LIU R Y. Adjoint polynomials and chromatically unique graphs[J].Discrete Math, 1997, 172: 85-92.