Regression credibility model with correlation risk under balanced loss function
HUANG Wei-zhong 1,2
1. School of Finance and Statistics, East China Normal University, Shanghai 200062, China;
2. Department of Mathematics, Shanghai Maritime University, Shanghai 201306, China
HUANG Wei-zhong. Regression credibility model with correlation risk under balanced loss function[J]. Journal of East China Normal University(Natural Sc, 2013, 2013(1): 30-40.
{1}WHITNEY A W. The theory of experience rating[J]. Proceedings of theCasualty Actuarial Society, 1918, 4: 274-292.{2}B\"{U}HLMANN H. Experience rating and credibility [J]. AstinBulletin, 1967, 4: 199-207.{3}B\"{U}HLMANN H, STRAUB E. Glaubw\"{u}rdigkeit f\"{u}r Schaden\"{a}stze[J]. Bulletin Swiss Ass Act, 1967, 70(1): 111-133.{4}JWELL W S. The use of collateral data in credibility theory: ahierarchical model[J]. Giornale dell'Istituto Italiano degliAttuari, 1975, 38: 1-16.{5}HACHEMEISTER C A. Credibility for regression models with applicationto trend[C]//Credibility, Theory and Application: Proeeedings of theBerkeley Actuarial Research Conference on credibility 1975. NewYork: Academic Press, 1975.{6}DHAENE J, DENUIT M, GOOVAERTS M J, et al. The conceptof comonotonicity in actuarial science and finance: theory[J].Insurance: Mathematics and Economics, 2002, 31: 3-33.{7}DHAENE J, DENUIT M, GOOVAERTS M J, et al. The conceptof comonotonicity in actuarial science and finance: applications[J].Insurance: Mathematics and Economics, 2002, 31: 133-161.{8}M\"{U}LLER A. Stop-loss order for portfolios of dependent risks[J].Insurance: Mathematics and Economics, 1997, 21: 219-223.{9}LU T Y, ZHANG Y. Generalized correlation order and stop-lossorder[J]. Insurance: Mathematics and Economics, 2004, 35: 69-76.{10}PURCARU O, DENUIT M. On the dependence induced by frequencycredibility models[J]. Belgian Actuarial Bulletin, 2002, 2(1):73-79.{11}PURCARU O, DENUIT M. Dependence in dynamic claim frequencycredibility models[J]. Astin Bulletin, 2003, 33(1): 23-40.{12}FREES E W, WANG P. Credibility using copulas[J]. North AmericanActuarial Journal, 2005, 9: 31-48.{13}YEO K L, VALDEZ E A. Claim dependence with common effects incredibility models[J]. Insurance: Mathematics and Economics, 2006,38: 609-629.{14}WEN L, WU X, ZHOU X. The credibility premiums for models withdependence induced by common effects[J]. Insurance: Mathematics andEconomics, 2009, 44: 19-25.{15}WEN L, DENG W. The credibility models with equal correlationrisk[J]. J Syst Sci Complex, 2010, 23: 1-8.{16}王筑娟, 温利民. 具有共同效应的信度回归模型[J]. 应用概率统计, 2011,27(3): 312-322.{17}ZELLNER A, GEISEL M S. Sensitivity of Control to Uncertainty andForm of the Criterion Function: The Future of Statistics,269-289[C]. Oshkosh, Wisc: Academia Press, 1968.{18}AITCHISON J, DUNSMORC I R. Statistical Prediction Analysis[M].Cambridge: Cambridge University Press, 1975.{19}ZELLNER A. Bayesian and Non-Bayesian estimation using balanced lossfunctions[C]//Statistical decision theory and Related Topics V. NewYork: Springer-Verlag, 1994: 337-390.{20}RODRIGNES J, ZELLENER A. Weighted balanced loss function andestimation of the mean time to failure[J]. Communications inStatistics Theory and Methods, 1994, 23: 3609-3616.{21}GILES J A, GILES D E A, OHTANI K. The exact risk of some pre-testand Stein-type regression estimators under balanced loss[J].Communications in Statistics-Theory and Methods, 1996, 25:2901-2924.{22}DEY D, GOSH M, STRAWDEEMAN W E. On estimation with balanced lossfunctions[J]. Statist Probab Lett, 1999, 45: 97-101.{23}JOZANI M J, MARCHAND E, PARSIAN A. Bayesian and Robust Bayesiananalysis under a general class of balanced loss functions[J].Statistical Papers, 2012, 53: 51-60.{24}G\'{O}MEZ-D\'{E}NIZ E. A generalization of the credibility theoryobtained by using the weighted balanced loss function[J]. Insurance:Mathematics and Economics, 2008, 42: 850-854.{25}陈希儒, 倪国熙. 数理统计学教程[M]. 上海: 上海科学技术出版社, 1988.{26}温利民. 风险保费的信度估计及其统计推断[D]. 上海:华东师范大学金融与统计学院, 2010.