[1] 周傲英,周敏奇,宫学庆.计算广告:以数据为核心的Web综合应用 [J]. 计算机学报, 2011, 34(10): 1805-1819.[2] REGELSON M, FAIN D. Predicting click-through rate using keyword clusters[C]//Proceedings of the Second Workshop on Sponsored Search Auctions, EC 2006. Michigan: ACM, 2006.[3] AGARWAL D,BRODER A, CHAKRABARTI D, et al. Estimating rates of rare events at multiple resolutions. Proceedings of the ACM SIGMOD International Conference on Management of Data. Beijing: ACM, 2007: 16-25.[4] RICHARDSON M, DOMINIWSKA E, RAGNO R. Predicting Clicks: Estimating the Click-Through Rate for New Ads[C]//Proceedings of the 16th International Conference on World Wide Web, WWW 2007. Banff: ACM, 2007: 521-530.[5] CHAKRABARTI D, AGARWAL D, JOSIFOVSKI V. Contextual Advertising by Combining Relevance with Click Feedback[C]//Proceedings of the 17th International Conference on World Wide Web, WWW 2008. Beijing: ACM, 2008: 417-426.[6] GOLLAPUDI S, PANIGRAHY R, GOLDSZMIDT M. Inferring Clickthrough Rates on Ads from Click Behavior on Search Results[C]//Proceedings of the Workshop on User Modeling for Web Applications, Fourth International Conference on Web Search and Web Data Mining, WSDM 2011. Hong Kong: ACM,2011.[7] YAN J, LIU N, WANG G, et al. How much can Behavioral Targeting Help Online Advertising?[C]//Proceedings of the 18th International Conference on World Wide Web, WWW 2009. Madrid: ACM, 2009: 261-270.[8] AHMED A, LOW Y, ALY M, et al. Scalable distributed inference of dynamic user interests for behavioral targeting[C]//Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Diego, CA: ACM, 2011: 114-122.[9] WANG X, LI W, CUI Y, et al. Click Through Rate Estimation for Rare Events in Online Advertising. Online Multimedia Advertising: Techniques and Technologies, Chapter1 [M/OL]. 2011[2012-06-15]. http://labs.yahoo.com/node/434.[10] PEARL J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference [M]. San Mateo, CA: Morgan Kaufmann Publishers, 1988.[11] RUSSEL S, NORVIG P. Artificial Intelligence—A Modern Approach [M]. Boston: Pearson Education, Publishing as Prentice-Hall, 2002.[12] DEMBCZYNSKI K, KOTLOWSKI W, WEISS D. Predicting Ads’ Click Through Rate with Decision Rules. [EB/OL]. 2008-03-31[2012-06-15].Yahoo Research, http://research.yahoo.com/workshops/troa-2008/papers/ submission_12.pdf.[13] GRAEPEL T, BORCHERT T, HERBRICH R, et al. Probabilistic Machine Learning in Computational Advertising Microsoft Research [EB/OL]. 2010-12-10 [2012-06-15]. http://research.microsoft.com/en-us/um/ beijing/events/mload-2010/.[14] CHAPELLE O, ZHANG Y. A dynamic Bayesian network click model for web search ranking[C]//Proceedings of the 18th International Conference on World Wide Web, WWW 2009. Madrid: ACM, 2009: 1-10.[15] 张少中,高飞.一种基于小世界网络和贝叶斯网的混合推荐模型 [J]. 小型微型计算机系统, 2010, 31(10): 1974-1978.[16] HRYCEJ T. Gibbs sampling in Bayesian networks [J]. Artificial Intelligence, 1990, 46: 351-363.[17] PEARL J. Evidential reasoning using stochastic simulation of causal models [J]. Artificial Intelligence, 1987, 32: 245-257.[18] KDD CUP 2012 Track 2: Predict the click-through rate of ads given the query and user information [EB/OL].2012-02-20[2012-06-15]. http://www. kddcup2012.org/c/kddcup2012-track2. |