Derivations of the even parts into the odd parts of the odd Hamiltonian Lie superalgebras
HUA Xiu-ying1, LIU Wen-de2
1. School of Applied Sciences, Harbin University of Science and Technology, Harbin 150080, China;
2. School of Mathematical Sciences, Harbin Normal University, Harbin 150025, China
HUA Xiu-ying, LIU Wen-de. Derivations of the even parts into the odd parts of the odd Hamiltonian Lie superalgebras[J]. Journal of East China Normal University(Natural Sc, 2014, 2014(4): 1-7.
1} KAC V G. Lie superalgebras[J]. Adv Math, 1977, 26(1): 8-96.{2} KAC V G. Classification of infinite-dimensional simple linearly compact Lie superalgebras[J]. Adv Math, 1998, 139: 1-55.{3} SUN H Z, HAN Q Z. A survey of Lie superalgebras[J]. Adv Phys (PRC), 1983, 1: 81-125 (in Chinese).{4} PETROGRADSKI V M. Identities in the enveloping algebras for modular Lie superalgebras[J]. J Algebra, 1992, 145: 1-21.{5} CELOUSOV M J. Derivations of Lie algebras of Cartan-type[J]. Izv Vyssh Uchebn Zaved Mat, 1970, 98: 126-134 (in Russian).{6} STRADE H, FARNSTEINER R. Modular Lie algebras and their representations[M]. Monogr Texbooks Pure Appl Math 116. New York: Dekker, 1988: 99-138.{7} STRADE H. Simple Lie algebras over fields of positive characteristic: I Structure theory[M]. Berlin: Walter de Gruyter, 2004: 184-199.{8} ZHANG Q C, ZHANG Y Z. Derivation algebras of modular Lie superalgebras W and S of Cartan-type[J]. Acta Math Sci, 2000, 20(1): 137-144.