PLAVSICD, NIKOLICS, TRINAJSTICN, et al. On the Harary index for the characterization of chemical graphs[J]. J Math Chem, 1993, 12: 235-250.IVANCIUC O, BALABAN T S, BALABAN A T. Reciprocal distance matrix, related local vertex invariants and topological indices[J]. J Math Chem, 1993, 12: 309-318.DAS K C, ZHOU B, TRINAJSTICN. Bounds on Harary index [J]. J Math Chem, 2009, 46: 1369-1376.ZHOU B, CAI X, TRINAJSTICN. On the Harary index [J]. J Math Chem, 2008, 44: 611-618.YU G, FENG L. On the maximal Harary index of a class of bicyclic graphs [J]. Util Math, 2010, 82: 285-292.BALAKRISHNAN R, SRIDHARAN N, IYER K V. Wiener index of graphs with more than one cut-vertex [J]. Appl Math Lett, 2008, 21: 922-927.CHEN D, The Harary index of a unicyclic graph (in Chinese) [D]. Master Thesis. Changsha: Hunan Normal University, 2009.FENG L, ILI\'{C} A, ZAGREB, Harary and hyper-Wiener indices of graphs with a given matching number [J]. Appl Math Lett, 2010, 23: 943-948.HE C H, CHEN P, WU B F, The Harary index of a graph under perturbation [J]. Discrete Math Alg Appl, 2010, 2: 247-255.ILIC A, YU G, FENG L, The Harary index of trees [J/OL]. arXiv preprint arXiv: 1104.0920 [math.CO], 2011.XU K , TRINAJSTI\'{C} N, Hyper-Wiener indices and Harary indices of graphs with cut edges [J]. Utilitas Math, 2011, 84: 153-163.WIENER H, Structural determination of paraffin boiling point [J]. J Amer Chem Soc, 1947, 69: 17-20.DOBRYNIN A, ENTRINGER R, GUTMAN I [J]. Acta Appl Math, 2001, 66: 211.XU K, DAS K C, On Harary index of graphs [J]. Discrete Appl Math, 2011, 159: 1631-1640.DAVID G, SEMMES S. Fractured Fractals and Broken Dreams: Self-Similar Geometry through Metric and Measure [M]. Oxford Lecture Series in Mathematics and its Applications. Oxford: Oxford Univevsity Press, 1997.COOPER D, PIGNATARO T. On the shape of cantor sets [J]. J Differ Geom, 1988, 28: 203-221.WEN Z X, XI L F. Relations among Whitney sets, self-similar arcs and quasi-arcs [J]. Israel J Math, 2003, 136: 251-267.RAO H, RUAN H J, XI L F. Lipschitz equivalence of self-similar sets [J]. C R Math Acad Sci Paris, 2006, 342: 191-196.FALCONER K J, MARSH D T. Classification of quasi-circles by Hausdorff dimension [J]. Nonlinearity, 1989, (2): 489-493.FALCONER K J, MARSH D T. On the Lipschitz equivalence of Cantor sets [J]. Mathematika, 1992, 39: 223-233.XI L F. Lipschitz equivalence of dust-like self-similar sets [J]. Math Z, 2010, 266: 683-691.RAO H, RUAN H J, WANG Y. Lipschitz equivalence of Cantor sets and algebraic properties of contraction ratios [M]. Trans Amer Math Soc, 2012, 364: 1109-1126.XI L F, RUAN H J. Lipschitz equivalence of generalized {1, 3, 5}-{1, 4, 5} self-similar sets [J]. Sci China Ser A, 2007, 50: 1537-1551.XI L F, RUAN H J, GUO Q L. Sliding of self-similar sets [J]. Sci China Ser A, 2007, 50: 351-360.WEN Z X, ZHU Z Y, DENG G T. Lipschitz equivalence of a class of general Sierpinski carpets [J]. J Math Anal Appl, 2012,385: 16-23.XI L F, XIONG Y. Self-similar sets with initial cubic patterns [J]. C R Math Acad Sci Paris 2010, 348: 15-20.XI L F, XIONG, Y. Lipschitz equivalence of fractals generated by nested cubes [J]. Math Z, 2012, 271: 1287-1308.LI B M, LI W X, MIAO J J. Lipschitz equivalence of McMullen sets [J]. Fractals, 2013, 21: id. 1350022.LALLEY S P, GATZOURAS D, Hausdorff and box dimensions of certain self-affine fractal [J]. Indiana University Mathematics Journal, 1992, 41: 533-568. |