[1]ALONSO L. Uniform generation of a Motzkin word [J]. Theoret ComputSci, 1994, 134: 529-536.[2]DEUTSCH E. Dyck path enumeration [J]. Discrete Math, 1999, 204:167-202.[3]DONAGHEY R, SHAPIRO L W. Motzkin numbers [J]. J Combin Theory Ser A,1977, 23: 291-301.[4]MANSOUR T. Counting peaks at height k in a Dyck path [J]. JInteger Seq, 2002, 5: Article 02.1.1.[5]PEART P, WOAN W J. Dyck paths with no peaks at height k[J]. JInteger Seq, 2001, 4: Article 01.1.3.[6]PANAYOTOPOULAOS A, SAPOUNAKIS A. On the prime decomposition of Dyckwords [J]. J Combin Math Combin Comput, 2002, 40: 33-39.[7]PANAYOTOPOULAOS A, SAPOUNAKIS A. On Motzkin words and noncrossingpartitions [J]. Ars Combin, 2003, 69: 109-116.[8]SULANKE R A. Bijective recurrences for Motzkin paths [J]. Adv InAppl Math, 2001, 27: 627-640.[9]BARCUCCI E, LUNGO A D, PERGOLA E, et al. A construction forenumerating k-colored Motzkin paths [C]Proc of the First AnnualInternational Conference on Computing and Combinatorics Springer,1995: 254-263.[10]SAPOUNAKIS A, TSIKOURAS P. On k-colored Motzkin words [J]. JInteger Seq, 2004, 7: Article 04.2.5.[11]SAPOUNAKIS A, TSIKOURAS P. Counting peaks and valleys in $k$-coloredMotzkin paths. The Electron J Combin, 2005, 12: R16.[12]DEUTSCH E, MUNARINI E, RINALDI S. Skew Dyck paths [J]. J StatistPlann Inference, 2010, 140: 2191-2203.[13]DEUTSCH E, MUNARINI E, RINALDI S. Skew Dyck paths, area, andsuperdigonal bargraphs [J]. J Statist Plann Inference, 2010, 140:1550-1562.[14]LIU L L, WANG Y. On the log-convexity of combinatorial sequences[J]. Adv Appl Math, 2007, 39: 453-476. |