XU Hui-zuo. Sharp bounds for Sándor-Yang means in terms of some bivariate means[J]. Journal of East China Normal University(Natural Sc, 2017, (4): 41-51.
[1] BRENNER J L, CARLSON B C. Homogeneous mean values: Weights and asymptotes[J]. Journal of Mathemat-ical Analysis and Applications, 1987, 123: 265-280.
[2] CARLSON B C. Algorithms involving arithmetic and geometric means[J]. The American Mathematical Monthly, 1971, 78(5): 496-505.
[3] NEUMAN E, SÁNDOR J. On the Schwab-Borchardt mean[J]. Mathematica Pannonica, 2003, 14(2): 253-266.
[4] NEUMAN E, SÁNDOR J. On the Schwab-Borchardt mean II[J]. Mathematica Pannonica, 2006, 17(1): 49-59.
[5] YANG Z H. Three families of two-parameter means constructed by trigonometric functions[J]. Journal of In-equalities and Applications, 2013(1), 1-27.
[6] YANG Z H, JIANG Y L, SONG Y Q, et al. Sharp inequalities for trigonometric functions[J]. Abstract and Applied Analysis, 2014, 18 pages.
[7] YANG Z H, CHU Y M. Optimal evaluations for the Sándor-Yang mean by power mean[J]. Mathematical In-equalities & Applications, 2016, 19(3): 1031-1038.
[8] ZHAO T H, QIAN W M, SONG Y Q. Optimal bounds for two Sándor-type means in terms of power means[J]. Journal of Inequalities and Applications, 2016(1): 64.