[1] RAMANUJAN S. Modular equations and approximations to [J]. Quart J Math Oxford Ser, 1914, 45(2): 350-372. [2] BORWEIN J M, BORWEIN P B. Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity [M]. New York: Wiley, 1987. [3] CHUDNOVSKY D V, CHUDNOVSKY G V, Approximations and complex multiplication according to Ramanu-jan [C]//Proceedings of the Centenary Conference, Urbana-Champaign, 1987. Boston: Academic Press, 1988, 375-472. [4] BARUAH N D, BERNDT B C. Ramanujan's series for 1/π arising from his cubic and quartic theories of elliptic functions [J]. J Math Anal Appl 2008, 341: 357-371. [5] BARUAH N D, BERNDT B C. Eisenstein Series and Ramanujan-type series for 1/π [J]. Ramanujan J, 2010, 23: 17-44. [6] BARUAH N D, BERNDT B C, CHAN H H. Ramanujan's series for 1/π: A survey [J]. Amer Math Monthly, 2009, 116: 567-587. [7] BARUAH N D, NAYAK N. New hypergeometric-like series for 1/π2, arising from Ramanujan's theory of elliptic functions to alternative base 3 [J]. Trans Amer Math Soc, 2011, 363: 887-900. [8] CHAN H H, CHAN S H, LIU Z G. Domb's numbers and Ramanujan-Sato type series for 1/π [J]. Adv in Math, 2004, 186: 396-410. [9] CHAN H H, COOPER S, LIAW W C. The Rogers-Ramanujan continued fraction and a quintic iteration for 1/π [J]. Proc Amer Math Soc, 2007, 135(11): 3417-3425. [10] CHAN H H, LIAW W C, TAN V. Ramanujan's class invariant n and a new class of series for 1/π [J]. J London Math Soc, 2001, 64(2): 93-106. [11] CHAN H H, LOO K L. Ramanujan's cubic continued revisited [J]. Acta Arith, 2007, 126: 305-313. [12] CHAN H H, VERRILL H. The Apéry numbers, the Almkvist-Zudilin numbers and new series for 1/π [J]. Math Res Lett, 2009, 16: 405-420. [13] CHAN H H, RUDILIN W. New representations for Apéry-like sequences 1/π [J]. Mathematika, 2010, 56: 107-117. [14] CHU W. Dougall's bilateral 2H2 series and Ramanujan-like π formulas [J]. Math Comp, 2011, 80: 2223-2251. [15] COOPER S. Series and iterations for 1/π [J]. Acta Arith, 2010, 141: 33-58. [16] GUILLERA J. Hypergeometric identities for 10 extended Ramanujan-type series [J]. Ramanujan J, 2008, 15: 219-234. [17] LEVRIE P. Using Fourier-Legendre expansions to derive series for 1/π and 1/π2 [J]. Ramanujan J, 2010, 22: 221-230. [18] ROGERS M. New 5F4 hypergeometric transformations, three-variable Mahler measures and formulas for 1/π [J]. Ramanujan J, 2009, 18: 327-340. [19] ZUDILIN W. More Ramanujan-type formulae for 1/π2 [J]. Russian Math Surveys, 2007, 62 (3): 634-636. [20] LIU Z G. A summation formula and Ramanujan type series [J]. J Math Anal App, 2012, 389: 1059-1065. [21] ANDREWS G E, ASKEY R, ROY R. Special Functions [M]. Cambridge: Cambridge University Press, 1999. |