[1] LATHIA N, CAPRA L. How smart is your smartcard? Measuring travel behaviours, perceptions, and incentives[C]//Proceedings of the 13th International Conference on Ubiquitous Computing. ACM, 2011:291-300. [2] LATHIA N, FROEHLICH J, CAPRA L. Mining public transport usage for personalised intelligent transport systems[C]//2010 IEEE 10th International Conference on Data Mining. IEEE, 2010:887-892. [3] BAGCHI M, WHITE P R. The potential of public transport smart card data[J]. Transport Policy, 2005, 12(5):464-474. [4] PELLETIER M P, TRÉPANIER M, MORENCY C. Smart card data use in public transit:A literature review[J]. Transportation Research Part C Emerging Technologies, 2011, 19(4):557-568. [5] ZHANG F, YUAN N J, WANG Y, et al. Reconstructing individual mobility from smart card transactions:A collaborative space alignment approach[J]. Knowledge and Information Systems, 2015, 44(2):299-323. [6] TRÉPANIER M, TRANCHANT N, CHAPLEAU R. Individual trip destina tion estimation in a transit smart card automated fare collection system[J]. Journal of Intelligent Transportation Systems Technology Planning & Operations, 2007, 11(1):1-14. [7] WANG W, ATTANUCCI J P, WILSON N H M. Bus passenger origin-destination estimation and related analyses using automated data collection systems[J]. Journal of Public Transportation, 2010, 14(4):131-150. [8] BARRY J, NEWHOUSER R, RAHBEE A, et al. Origin and destination estimation in New York City with automated fare system data[J]. Transportation Research Record, 2002, 1817:183-187. [9] SONG C, QU Z, BLUMM N, et al. Limits of predictability in human mobility[J]. Science, 2010, 327:1018-1021. [10] GIANNOTTI F, NANNI M, PEDRESCHI D, et al. Unveiling the complexity of human mobility by querying and mining massive trajectory data[J]. The VLDB Journal, 2011, 20(5):695-719. [11] LI Z, DING B, HAN J, et al. Mining periodic behaviors for moving objects[C]//Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2010:1099-1108. [12] WANG Y, YUAN N J, LIAN D, et al. Regularity and conformity:Location prediction using heterogeneous mobility data[C]//ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2015:1275-1284. [13] BALAN R K, NGUYEN K X, JIANG L. Real-time trip information service for a large taxi fleet[C]//Proceedings of the 9th International Conference on Mobile Systems, Applications, and Services. ACM, 2011:99-112. [14] DASH M, KOO K K, HOLLECZEK T, et al. From mobile phone data to transport network-gaining insight about human mobility[C]//IEEE International Conference on Mobile Data Management. IEEE, 2015:243-250. [15] DAI J, YANG B, GUO C, et al. Personalized route recommendation using big trajectory data[C]//IEEE 31st International Conference on Data Engineering. IEEE, 2015:543-554. [16] 龙瀛, 孙立君, 陶遂. 基于公共交通智能卡数据的城市研究综述[J]. 城市规划学刊, 2015, 3:70-77. [17] LONG Y, THILL J C. Combining smart card data and household travel survey to analyze jobs-housing relationships in Beijing[J]. Computers Environment & Urban Systems, 2015, 53:19-35. [18] EL-GENEIDY A, GRIMSRUD M, WASFI R, et al. New evidence on walking distances to transit stops:Identifying redundancies and gaps using variable service areas[J]. Transportation, 2014, 41(1):193-210. [19] DANIELS R, MULLEY C. Explaining walking distance to public transport:The dominance of public transport supply[J]. Journal of Transport & Land Use, 2011, 6(2):5-20. [20] CUI A. Bus passenger origin-destination matrix estimation using automated data collection systems[D]. Cambridge, MA:Massachusetts Institute of Technology, 2006. [21] 胡继华, 邓俊, 黄泽. 结合出行链的公交IC卡乘客下车站点判断概率模型[J]. 交通运输系统工程与信息, 2014, 14(2):62-67. [22] 上海市政府数据服务网.[DB/OL].[2017-05-20]. http://www.datashanghai.gov.cn. |