[1] LATIF M A, SHOAIB M. Hermite-Hadamard type integral inequalities for differentiable m-preinvex and (α, m)-preinvex functions[J]. Journal of the Egyptian Mathematical Society, 2015, 23:236-241. [2] PAVIĆ Z. Improvements of the Hermite-Hadamard inequality for the simplex[J]. Journal of Inequalities and Applications, 2015, 2015(1):1-11. [3] WU Y, QI F. On some Hermite-Hadamard type inequalities for (s, QC)-convex functions[J]. Springer Plus, 2016, 5(49):1-13. [4] LATIF M A. Inequalities of Hermite-Hadamard type for functions whose derivatives in absolute value are convex with applications[J]. Arab J Math Sci, 2015, 21(1):84-97. [5] ALOMARI M W, DARUS M, KIRMACI U S. Some inequalities of Hermite-Hadamard type for s-convex functions[J]. Acta Mathematica Scientia, 2011, 31B(4):1643-1652. [6] ÖZDEMIR M E, AVCI M, KAVURMACI H. Hermite-Hadamard type inequalities via (α, m)-convexity[J]. Comput Math Appl, 2011, 61:2614-2620. [7] ÖZDEMIR M E, YILDIZ Ç, AKDEMIR A O, etal. On some inequalities for s-convex functions and applications[J]. Journal of Inequalities and Applications, 2013, 2013(1):1-11. [8] BABAKHANI A, DAFTARDAR-GEIJI V. On calculus of local fractional derivatives[J]. J Math Anal Appl, 2002, 270(1):66-79. [9] ZHAO Y, CHENG D F, YANG X J. Approximation solutions for local fractional Schrödinger equation in the one-dimensional Cantorian system[J]. Adv Math Phys, 2013:1-5. Article ID 291386. [10] YANG X J. Advanced Local Fractional Calculus and Its Applications[M]. NewYork:World Science Publisher, 2012. [11] YANG Y J, BALEANU D, YANG X J. Analysis of fractal wave equations by local fractional Fourier series method[J]. Adv Math Phys, 2013:377-384. Article ID 632309. [12] MO H X, SUI X. Generalized s-convex functions on fractal sets[J]. Math A P, 2014:1-12. [13] MO H X, SUI X. Hermite-Hadamard type inequalities for generalized s-convex functions on real linear fractal set Rα(0< α < 1)[J]. Math Sciences, 2017, 11(3):241-246. |