[1] 田畴. 李群及其在微分方程中的应用[M]. 北京:科学出版社, 2001. [2] OLVER P. Applications of Lie Groups to Differential Equations[M]. New York:Springer, 1993. [3] BLUMAN G, ANCO S. Symmetry and Integration Methods for Differential Equations[M]. New York:SpringerVerlag, 2002. [4] HIROTA R, SATSUMA J. A variety of nonlinear network equations generated form the Bäcklund transformation for the Tota lattice[J]. Suppl Prog Theor Phys, 1976, 59:64-100. [5] LIU H Z, LI J B, CHEN F J. Exact periodic wave solutions for the mKdV equations[J]. Nonlinear Anal, 2009, 70:2376-2381. [6] WANG G W, XU T Z, LIU X Q. New explicit solutions of the fifth-order KdV equation with variable cóefficients[J]. Bull Malays Math Sci Soc 2014, 37(3):769-778. [7] 胡晓瑞. 非线性系统的对称性与可积性[D]. 上海:华东师范大学, 2012,43-77. [8] 刘大勇, 夏铁成.齐次平衡法寻找Caudrey-Dodd-Gibbon-Kaeada方程的多孤子解[J].应用数学和计算数学学报, 2011, 25(2):205-212. [9] 刘丽环, 常晶, 冯雪. 求非线性发展方程行波解的(G'/G)展开法[J].吉林大学学报(理学版), 2013, 51(2):183-186. [10] 张辉群. 齐次平衡方法的扩展及应用[J]. 数学物理学报, 2001, 21A(3):321-325. [11] YAO Q L. Existence, multiplicity and infinite solvability of positive solutions to a nonlinear fourth-order periodic boundary value problem[J]. Nonlinear Analysis, 2005, 63:237-246. [12] WANG M L, LI X Z, ZHANG J L. The (G'/G) -expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics[J]. Phys Lett A, 2008, 372:417-423. [13] 赵烨, 徐茜. 一类耦合Benjamin-Bona-Mahony型方程组的新精确解[J].纯粹数学与应用数学, 2015, 31:12-17. [14] LI K H, LIU H Z. Lie symmetry analysis and exact solutions for nonlinear LC circuit equation[J]. Chinese Journal of Quantum Electronics, 2016, 33:279-286. [15] 杨春艳, 李小青. 一类四阶偏微分方程的对称分析及级数解[J].纯粹数学与应用数学, 2016, 32:432-440. [16] 徐兰兰, 陈怀堂.变系数(2+1)维Nizhnik-Novikov-Vesselov的三孤子新解[J].物理学报, 2013, 62(9):090204(1-6). [17] 魏帅帅, 李凯辉, 刘汉泽. 展开法在Riccati方程中的应用[J].河南科技大学学报. 2015, 36:92-96. [18] IBRAGIMOV N H. Integrating factors, adjoint equations and Lagrangians[J]. J Math Anal Appl, 2006, 38:742-757. [19] IBRAGIMOV N H. A new conservation theorem[J]. J Math Anal Appl, 2007, 333:311-328. [20] IBRAGIMOV N H. Nonlinear self-adjointness and conservation laws[J]. J Phys A, 2011, 44:432002(899). [21] ROSA R, GANDARIAS M L, BRUZON M S. Symmetries and conservation laws of a fifth-order KdV equation with time-dependent coefficients and linear damping[J]. Nonlinear Dyn, 2016, 84:135-141. [22] YOMBA E. On exact solutions of the coupled Klein-Gordon-Schrödinger and the complex coupled KdV equations using mapping method[J]. Chaos, Solitons and Fractals, 2004, 21:209-229. |