[1] HU X B. A powerful approach to generate new integrable systems[J]. Journal of Physics A:Mathematical and General, 1994, 27:2497-2514.
[2] HU X B. An approach to generate superextensions of integrable systems[J]. Journal of Physics A:Mathematical and General, 1997, 30:619-632.
[3] MA W X, HE J S, QIN Z Y. A supertrace identity and its applications to superintegrable systems[J]. Journal of Mathematics Physics, 2008, 49:033511.
[4] WEI H Y, XIA T C. Nonlinear integrable couplings of super Kaup-Newell hierarchy and its super Hamiltonian structures[J]. Acta Physica Sinica, 2013, 62:13-20.
[5] TAO S X, XIA T C. Nonlinear super-integrable couplings of super Broer-Kaup-Kupershmidt Hierarchy and its super Hamiltonian structures[J]. Advances in Mathematica Physics, 2013:520765.
[6] DONG H H, WANG X Z. Lie algebras and Lie super algebra for the integrable couplings of NLS-MKdV hierarchy[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14:4071-4077.
[7] MEL'NIKOV V K. Intersection of the nonlinear schrodinger equation with a source[J]. Inverse Problems, 1992, 8:133-147.
[8] DOKTROV E V, VLASOV R A. Optical solitons in media with combined resonant and non-resonant (cubic) nonlinearities in the presence of perturbations[J]. Journal of Optics, 1991, 38:31-45.
[9] MEL'NIKOV V K. Integration of the Korteweg-de Vries equation with a source[J]. Inverse Problems, 1990, 6:233-246.
[10] ZAKHAROV V E, KUZNETSOV E A. Multi-scale expansitions in the theory of systems integrable by the inverse scattering transform[J]. Physica D:Nonlinear phenomena, 1986, 18:455-463.
[11] MEL'NIKOV V K. Integration of method of the Korteweg-de Vries equation with a self-consistent source[J]. Physics Letters A, 1988, 133:493-496.
[12] LEON J. Solution of an initial-boundary value problem for coupled nonlinear waves[J]. Journal of Physics A:Mathematics and General, 1990, 23:1385-1403.
[13] LEON J. Spectral transform and solitons for generalized coupled Bloch systems[J]. Journal of Mathematical Physics, 1988, 29:2012-2019.
[14] 胡贝贝, 张玲, 方芳. Li谱问题的超化及其自相容源[J]. 吉林大学学报(理学版), 2015, 53:229-234.
[15] ZHANG D J. The N-soliton solutions of the MKdV equation with self-consistent sources[J]. Chaos, Solitons and Fractals, 2003, 18:31-43.
[16] ZENG Y B, MA W X, SHAO Y J. Two binary Darboux transformations for the KdV hierarchy with self-consistent sources[J]. Journal of Mathematical Physics, 2001, 42:2113-2128.
[17] ZENG Y B, SHAO Y J, MA W X. Integral-type darboux transformations for the mKdV hierarchy with selfconsistent sources[J]. Communications in theoretical Physics, 2002, 38:641-648.
[18] LI L. Conservation laws and self-consistent sources for a super-CKdV equation hierarchy[J]. Physics Lett A, 2011, 375:1402-1406.
[19] WANG H, XIA T C. Conservation laws for a super G-J hierarchy with self-consistent sources[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17:566-572.
[20] MIURA R M, GARDNER C S, KRUSKAL M D. Korteweg-de Vries equation and generalizations Ⅱ:Existence of conservation laws and constants of motion[J]. Journal of Mathematical Physics, 1968, 9:1204-1209.
[21] 胡贝贝, 张玲. 超经典Boussinesq系统的守恒律和自相容源[J]. 数学杂志, 2016, 36:584-590.
[22] WANG H, XIA T C. Conservation laws and self-consistent sources for a super KN hierarchy[J]. Appl Math Comput, 2013, 219:5458-5464.
[23] LI L. Conservation laws and self-consistent sources for a super-CKdV equation hierarchy[J]. Physics Letters A, 2011, 375:1402-1406.
[24] TAO S X. Self-Consistent sources and conservation laws for super coupled Burgers equation hierarchy[J]. International Journal of Applied Physics and Mathematics, 2013, 3:252-256.
[25] TU G Z. An extension of a theorem on gradients of conserved densities of integrable system[J]. Northeastern Math J, 1990, 6:26-32.
[26] ZHAI Y Y, GENG X G. Straightening out of the flows for the Hu hierarchy and its algebro-geometric solutions[J]. Math Anal Appl J, 2013, 397(2):561-576. |