[1] RENDLE S. Factorization machines[C]//IEEE International Conference on Data Mining. IEEE Computer Society, 2010:995-1000.
[2] FRIEDMAN J H. Greedy function approximation:A gradient boosting machine[J]. Annals of Statistics, 2001, 29(5):1189-1232.
[3] HE X, PAN J, JIN O, et al. Practical lessons from predicting clicks on ads at Facebook[C]//Proceedings of the 8th International Workshop on Data Mining for Online Advertising. ACM, 2014:1-9.
[4] 纪文迪, 王晓玲, 周傲英. 广告点击率估算技术综述[J]. 华东师范大学学报(自然科学版), 2013(3):1-14.
[5] RICHARDSON M, DOMINOWSKA E, RAGNO R. Predicting clicks:Estimating the click-through rate for new ads[C]//International Conference on World Wide Web. ACM, 2007:521-530.
[6] CHAPELLE O, ZHANG Y. A dynamic bayesian network click model for web search ranking[C]//International Conference on World Wide Web. ACM, 2009:1-10.
[7] GRAEPEL T, CANDELA J Q, BORCHERT T, et al. Web-scale Bayesian click-through rate prediction for sponsored search advertising in Microsoft's Bing Search engine[C]//International Conference on Machine Learning. DBLP, 2010:13-20.
[8] JOACHIMS T. Optimizing search engines using click-through data[C]//Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2002:133-142.
[9] SHAN L, LIN L, SUN C, et al. Predicting ad click-through rates via feature-based fully coupled interaction tensor factorization[J]. Electronic Commerce Research & Applications, 2016, 16(C):30-42.
[10] YAN L, LI W J, XUE G R, et al. Coupled group lasso for web-scale CTR prediction in display advertising[C]//International Conference on Machine Learning. 2014:802-810.
[11] AGARWAL D, LONG B, TRAUPMAN J, et al. LASER:A scalable response prediction platform for online advertising[C]//ACM International Conference on Web Search and Data Mining. ACM, 2014:173-182.
[12] AQUIAR E, NAGRECHA S, CHAWLA N V. Predicting online video engagement using clickstreams[C]//IEEE International Conference on Data Science and Advanced Analytics (DSAA). IEEE, 2015. DOI:10.1109/DSAA.2015.7344873.
[13] 李思琴, 林磊, 孙承杰. 基于卷积神经网络的搜索广告点击率预测[J]. 智能计算机与应用, 2015(5):22-25.
[14] SCHAPIRE R E. A brief introduction to boosting[C]//16th International Joint Conference on Artificial Intelligence.[S.l.]:Morgan Kaufmann Publishers Inc, 1999:1401-1406.
[15] QUINLAN J R. Induction on decision tree[J]. Machine Learning, 1986(1):81-106.
[16] HARTIGAN J A, WONG M A. Algorithm AS 136:A k-means clustering algorithm[J]. Applied Statistics, 1979, 28(1):100-108.
[17] BREIMAN L. Out-of-bag estimation[R]. Berkeley:University of California, 1996.
[18] BREIMAN L. Bagging Predictors[M].[S.l.]:Kluwer Academic Publishers, 1996.
[19] CHEN T, GUESTRIN C. XGBoost:A scalable tree boosting system[C]//ACM SIGKDD International Conference. ACM, 2016:785-794. |