[1] ANDREWS G E, ASKEY R, ROY R. Special Functions[M]. Cambridge:Cambridge University Press, 2000.
[2] BAILEY W N. Generalized Hypergeometric Series[M]. Cambridge:Cambridge University Press, 1935.
[3] SLATER L J. Generalized Hypergeometric Functions[M]. Cambridge:Cambridge University Press, 1966.
[4] GASPER G, RAHMAN M. Basic Hypergeometric Series[M]. 2nd ed. Cambridge:Cambridge University Press, 2004.
[5] CHU W. Inversion techniques and combinatorial identity:A unified treatment for the 7F6-series identities[J]. Collect Math, 1994, 45:13-43.
[6] CHU W, WANG X Y. Abel's lemma on summation by parts and terminating q-series identities[J]. Numer Algorithms, 2008, 49(1/4):105-128.
[7] WANG C Y, CHEN X J. New proof for a nonterminating cubic hypergeometric series identity of Gasper-Rahman[J]. Journal of Nanjing University (Mathematical Biquarterly), 2015, 32:38-45.
[8] WANG C Y. New transformation for the partial sum of a cubic q-series[J]. Journal of East China Normal University (Natural science), 2015, 6:46-52.
[9] GESSEL I, STANTON D. Strange evaluations of hypergeometric series[J]. SIAM J Math Anal, 1982, 13:295-308.
[10] GASPER G, RAHMAN M. An indefinite bibasic summation formula and some quadratic, cubic and quartic summation and transformation formulas[J]. Canad J Math, 1990, 42:1-27.
[11] WANG C Y, DAI J J, MEZÖ I. A nonterminating 7F6-series evaluation[J]. Integral Transforms and Special Functions, 2018, 29(9):719-724.
[12] BAILEY W N. A note on certain q-identities[J]. Quart J Math (Oxford), 1941, 12:173-175.
[13] DAUM J A. The basic analogue of Kummer's theorem[J]. Bull Amer Math Soc, 1942, 48:711-713. |