[1] KORSUNSKY S V. Soliton solutions for a second-order KdV equation[J]. Phys Lett A, 1994, 185:174-176.
[2] LEE C T, LIU J L, LEE C C, et al. The second-order KdV equation and its soliton-like solution[J]. Modern Physics Letters B, 2009, 23:1771-1780.
[3] LEE C C, LEE C T, LIU J L, et al. Quasi-solitons of the two-mode Korteweg-de Vries equation[J]. Eur Phys J Appl Phys, 2010, 52:11301.
[4] LEE C T. Some notes on a two-mode Korteweg-de Vries equation[J]. Phys Scr, 2010, 81:065006.
[5] LEE C T, LIU J L. A Hamiltonian model and soliton phenomenon for a two-mode KdV equation[J]. Rocky Mt J Math, 2011, 41:1273-1289.
[6] LEE C T, LEE C C. On wave solutions of a weakly nonlinear and weakly dispersive two-mode wave system[J]. Waves in Random and Complex Media, 2013, 23:56-76.
[7] LEE C T, LEE C C. Analysis of solitonic phenomenon for a two-mode KdV equation[J]. Physics of Wave Phenomena, 2014, 22:69-80.
[8] LEE C T, LEE C C. On the study of a nonlinear higher order dispersive wave equation:Its mathematical physical structure and anomaly soliton phenomena[J]. Waves in Random and Complex Media, 2015, 25:197-222.
[9] LEE C T, LEE C C. Symbolic computation on a second-order KdV equation[J]. Journal of Symbolic Computation, 2016, 74:70-95.
[10] WAZWAZ A M. Multiple soliton solutions and other exact solutions for a two-mode KdV equation[J]. Math Methods Appl Sci, 2017, 40:2277-2283.
[11] LEE C T, LEE C C, LIU M L. Double-soliton and conservation law structures for a higher-order type of Korteweg-de Vries equation[J]. Physics Essays, 2015, 28:633-638.
[12] ALQURAN M, JARRAH A. Jacobi elliptic function solutions for a two-mode KdV equation[J/OL]. Journal of King Saud University-Science, (2017-07-03)[2018-06-28]. http://dx.doi.org/10.1016/j.jksus.2017.06.010.
[13] XIAO Z J, TIAN B, ZHEN H L, et al. Multi-soliton solutions and Bäcklund transformation for a two-mode KdV equation in a fluid[J]. Waves in Random and Complex Media, 2017, 27:1-14.
[14] WAZWAZ A M. A two-mode modified KdV equation with multiple soliton solutions[J]. Appl Math Lett, 2017, 70:1-6.
[15] WAZWAZ A M. A two-mode Burgers equation of weak shock waves in a fluid:Multiple kink solutions and other exact solutions[J]. Int J Appl Comput Math, 2017, 3:3977-3985.
[16] WAZWAZ A M. A study on a two-wave mode Kadomtsev-Petviashvili equation:Conditions for multiple soliton solutions to exist[J]. Math Methods Appl Sci, 2017, 40:4128-4133.
[17] JARADAT H M, SYAM M, ALQURAN M. A two-mode coupled Korteweg-de Vries:Multiple-soliton solutions and other exact solutions[J]. Nonlinear Dyn, 2017, 90:371-377.
[18] WAZWAZ A M. Two-mode fifth-order KdV equations:Necessary conditions for multiple-soliton solutions to exist[J]. Nonlinear Dyn, 2017, 87:1685-1691.
[19] WAZWAZ A M. Two-mode Sharma-Tasso-Olver equation and two-mode fourth-order Burgers equation:Multiple kink solutions[J]. Alexandria Eng J, 2018, 57:1971-1976.
[20] JARDAT H M. Two-mode coupled Burgers equation:Multiple-kink solutions and other exact solutions[J]. Alexandria Eng J, 2018, 57:2151-2155.
[21] SYAM M, JARADAT H M, ALQURAN M. A study on the two-mode coupled modified Korteweg-de Vries using the simplified bilinear and the trigonometric-function methods[J]. Nonlinear Dyn, 2017, 90:1363-1371.
[22] WAZWAZ A M. Two wave mode higher-order modified KdV equations:Essential conditions for multiple soliton solutions to exist[J]. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27:2223-2230.
[23] HEREMAN W, NUSEIR A. Symbolic methods to construct exact solutions of nonlinear partial differential equations[J]. Mathematics and Computers in Simulation, 1997, 43:13-27.
[24] WAZWAZ A M. Single and multiple-soliton solutions for the (2+1)-dimensional KdV equation[J]. Appl Math Comput, 2008, 204:20-26.
[25] ZUO J M, ZHANG Y M. The Hirota bilinear method for the coupled Burgers equation and the high-order Boussinesq-Burgers equation[J]. Chin Phy B, 2011, 20:010205.
[26] WAZWAZ A M. Multiple soliton solutions for the integrable couplings of the KdV and the KP equations[J]. Open Physics, 2013, 11:291-295.
[27] WAZWAZ A M. Multiple kink solutions for two coupled integrable (2+1)-dimensional systems[J]. Appl Math Lett, 2016, 58:1-6.
[28] YU F J. Prolongation structure for nonlinear integrable couplings of a KdV soliton hierarchy[J]. Chin Phys B, 2012, 21:010201.
[29] MALFLIET W, HEREMAN W. The tanh method:I. Exact solutions of nonlinear evolution and wave equations[J]. Phys Scr, 1996, 54:563-568.
[30] FAN E, HONA Y C. Generalized tanh method extended to special types of nonlinear equations[J]. Zeitschrift für Naturforschung A, 2002, 57:692-700.
[31] WAZWAZ A M. The tanh method for traveling wave solutions of nonlinear equations[J]. Appl Math and Comput, 2004, 154:713-723.
[32] LIU S, FU Z, LIU S, et al. Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations[J]. Phys Lett A, 2001, 289:69-74. |