[1] LATIF M A, SHOAIB M. Hermite-Hadamard type integral inequalities for difierentiable m-preinvex and (α, m)-preinvex functions[J]. Journal of the Egyptian Mathematical Society, 2015, 23:236-241.
[2] ISCAN I. Hermite-Hadamard and Simpson-like type inequalities for difierentiable harmonically convex functions[J/OL]. J Math, 2014, Article ID 346305, 10 pages. http://dx.doi.org/10.1155/2014/346305.
[3] CHUN L, QI F. Inequalities of Simpson type for functions whose third derivatives are extended s-convex functions and applications to means[J]. J Comp Anal Appl, 2015, 19(3):555-69.
[4] SUN W B, LIU Q. New Hermite-Hadamard type inequalities for (α, m)-convex functions and applications to special means[J]. J Math Inequal, 2017, 11(2):383-397.
[5] ISCAN I. Hermite-Hadamard type inequalities for harmonically convex functions[J]. Hacet J Math Stat, 2014, 43(6):935-942.
[6] ZHANG T, JI A, QI F. Integral inequalities of Hermite-Hadamard type for harmonically quasi-convex functions[J]. Proceedings of the Jangjeon Mathematical Society, 2013, 16(3):399-407.
[7] LI Y, DU T. Some Simpson type integral inequalities for functions whose third derivatives are (α, m)-GA-convex functions[J]. Journal of the Egyptian Mathematical Society, 2016, 24(2):175-180.
[8] QAISAR S, HE C J, HUSSAIN S. A generalizations of Simpson's type inequality for difierentiable functions using (α, m)-convex functions and applications[J]. J Inequal Appl, 2013:158.
[9] WANG W, QI J B. Some new estimates of Hermite-Hadamard inequalities for harmonically convex functions with applications[J]. International Journal of Analysis and Applications, 2017, 11(1):15-21.
[10] CHEN F, WU S. Some Hermite-Hadamard type inequalities for harmonically s-convex functions[J]. The Scientiflc World Journal, 2014, Article ID 279158, 7 pages.
[11] YANG X J. Advanced Local Fractional Calculus and Its Applications[M]. NewYork:World Science Publisher, 2012.
[12] YANG X J. Local Fractional Functional Analysis and Its Applications[M]. Hong Kong:Asian Academic Publisher, 2011.
[13] YANG X J, GAO F, SRIVASTAVA H M. New rheological models within local fractional derivative[J]. Rom Rep Phys, 2017, 69(3), Article ID 113, 1-12.
[14] YANG X J, MACHADO J T, CATTANI C, et al. On a fractal LC-electric circuit modeled by local fractional calculus[J]. Communications in Nonlinear Science and Numerical Simulation, 2017, 47:200-206.
[15] YANG X J, GAO, F, SRIVASTAVA H M. Non-difierentiable exact solutions for the nonlinear odes deflned on fractal sets[J]. Fractals, 2017, 25(4), 1740002(9pages).
[16] YANG X J, MACHADO J T. On exact traveling-wave solution for local fractional Boussinesq equation in fractal domain[J]. Fractals, 2017, 25(4), 1740006(7pages).
[17] 孙文兵. 分形空间上的新Hadamard型不等式及应用[J]. 华东师范大学学报(自然科学版), 2017(6):33-41.
[18] MO H X, SUI X, YU D. Generalized convex functions on fractal sets and two related inequalities[J]. Abstract and Applied Analysis, 2014, Article ID 636751(7 pages).
[19] ERDENA S, SARIKAYA M Z. Generalized Pompeiu type inequalities for local fractional integrals and its applications[J]. Applied Mathematics and Computation, 2016, 274:282-291.
[20] 孙文兵, 刘琼. 分形集上广义凸函数的新Hermite-Hadamard型不等式及其应用[J]. 浙江大学学报(理学版), 2017, 44(1):47-52.
[21] SUN W B. Generalized harmonically convex functions on fractal sets and related Hermite-Hadamard type inequalities[J]. Journal of Nonlinear Sciences and Applications, 2017(10):5869-5880.
[22] SET E, UYGUN N, TOMAR M. New inequalities of Hermite-Hadamard type for generalized quasi-convex functions with applications[J]. AIP Conference Proceedings, 2016, 1726(1):1-5.
[23] MO H X, SUI X. Hermite-Hadamard-type inequalities for generalized s-convex functions on real linear fractal set Rα(0< α < 1)[J]. Mathematical Sciences, 2017, 11(3):241-246.
[24] SARIKAYA M Z, BUDAK H. Generalized Ostrowski type inequalities for local fractional integrals[J]. Proceedings of the American Mathematical Society, 2017, 145(4):1527-1538. |