[1] ABRAMOV S A. Problems of computer algebra involved in the search for polynomial solutions of linear differential and difference equations[J]. Moscow University Computational Mathematics and Cybernetics, 1989(3):63-68. [2] ABRAMOV S A. Rational solutions of linear differential and difference equations with polynomial coefficients[J]. USSR Computational Mathematics and Mathematical Physics, 1989, 29(6):7-12. DOI:10.1016/S0041-5553(89)80002-3. [3] PETKOVŠEK M. Hypergeometric solutions of linear recurrences with polynomial coefficients[J]. Journal of Symbolic Computation, 1992, 14(2/3):243-264. [4] ABRAMOV S A, PETKOVŠEK M. D'Alembertian solutions of linear differential and difference equations[C]//Proceedings of the International Symposium on Symbolic and Algebraic Computation, 1994:169-174. [5] HENDRICKS P A, SINGER M F. Solving difference equations in finite terms[J]. Journal of Symbolic Computation, 1999, 27(3):239-259. DOI:10.1006/jsco.1998.0251. [6] ABRAMOV S A, BRONSTEIN M, PETKOVŠEK M. On polynomial solutions of linear operator equations[C]//Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation, 1995:290-296. [7] ABRAMOV S A. Rational solutions of linear difference and q-difference equations with polynomial coefficients[C]//Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation, 1995:285-289. [8] ABRAMOV S A, POLYAKOV S. Improved universal denominators[J]. Programming and Computer Software, 2007, 33(3):132-138. DOI:10.1134/S0361768807030024. [9] ABRAMOV S A, GHEFFAR A, KHMELNOV D. Factorization of polynomials and gcd computations for finding universal denominators[C]//International Workshop on Computer Algebra in Scientific Computing, 2010:4-18. [10] ABRAMOV S A, GHEFFAR A, KHMELNOV D. Rational solutions of linear difference equations:Universal denominators and denominator bounds[J]. Programming and Computer Software, 2011, 37(2):78-86. DOI:10.1134/S0361768811020022. [11] ABRAMOV S A, KHMELNOV D. Denominators of rational solutions of linear difference systems of an arbitrary order[J]. Programming and Computer Software, 2012, 38(2):84-91. DOI:10.1134/S0361768812020028. [12] WANG M. Solitary wave solutions for variant Boussinesq equations[J]. Physics letters A, 1995, 199(3/4):169-172. DOI:10.1016/0375-9601(95)00092-H. [13] WANG M, ZHOU Y, LI Z. Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics[J]. Physics Letters A, 1996, 216(1/5):67-75. [14] ZHAO X, WANG L, SUN W. The repeated homogeneous balance method and its applications to nonlinear partial differential equations[J]. Chaos, Solitons & Fractals, 2006, 28(2):448-453. [15] KHALFALLAH M. New exact traveling wave solutions of the (3+1) dimensional Kadomtsev-Petviashvili (KP) equation[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(4):1169-1175. DOI:10.1016/j.cnsns.2007.11.010. [16] KHALFALLAH M. Exact traveling wave solutions of the Boussinesq-Burgers equation[J]. Mathematical and Computer Modelling, 2009, 49(3/4):666-671. [17] RADY A A, OSMAN E, KHALFALLAH M. The homogeneous balance method and its application to the BenjaminBona-Mahoney (BBM) equation[J]. Applied Mathematics and Computation, 2010, 217(4):1385-1390. DOI:10.1016/j.amc.2009.05.027. [18] NGUYEN L T K. Modified homogeneous balance method:Applications and new solutions[J]. Chaos, Solitons & Fractals, 2015, 73:148-155. [19] ZHANG Y, LIU Y P, TANG X Y. M-lump solutions to a (3+1)-dimensional nonlinear evolution equation[J]. Computers & Mathematics with Applications, 2018, 76(3):592-601. [20] ZHANG Y, LIU Y P, TANG X Y. M-lump and interactive solutions to a (3+1)-dimensional nonlinear system[J]. Nonlinear Dynamics, 2018, 93(4):2533-2541. DOI:10.1007/s11071-018-4340-9. [21] LI Z B, LIU Y P. RATH:A Maple package for finding travelling solitary wave solutions to nonlinear evolution equations[J]. Computer Physics Communications, 2002, 148(2):256-266. DOI:10.1016/S0010-4655(02)00559-3. [22] LI Z B, LIU Y P. RAEEM:A Maple package for finding a series of exact traveling wave solutions for nonlinear evolution equations[J]. Computer Physics Communications, 2004, 163(3):191-201. DOI:10.1016/j.cpc.2004.08.007. [23] MAY R M. Simple mathematical models with very complicated dynamics[J]. Nature, 1976, 261:85-93. DOI:10.1038/261459a0. [24] BITTANTI S, LAUB A J, WILLEMS J C. The Riccati Equation[M]. Berlin:Springer Science & Business Media, 2012. |