Journal of East China Normal University(Natural Science) ›› 2023, Vol. 2023 ›› Issue (1): 104-113.doi: 10.3969/j.issn.1000-5641.2023.01.011
• Catalytic Reaction Technologies • Previous Articles
Hao WANG1, Guofeng ZHAO1, Yong LU1,2,*()
Received:
2022-06-15
Accepted:
2022-11-07
Online:
2023-01-25
Published:
2023-01-07
Contact:
Yong LU
E-mail:ylu@chem.ecnu.edu.cn
CLC Number:
Hao WANG, Guofeng ZHAO, Yong LU. Progress in synthesis of methyl glyoxylate by selective oxidation of methyl glycolate with molecular oxygen[J]. Journal of East China Normal University(Natural Science), 2023, 2023(1): 104-113.
Table 1
Comparison of several Ag-based catalysts for selective oxidation of ethanol"
催化剂 | Ag /(wt%) | 反应条件 | 乙醇转化率 /% | 乙醛选择性 /% | 文献 | ||
GHSVa /(mL·gcat–1·h–1) | T/℃ | EtOH/O2 (摩尔比) | |||||
Ag/CeO2 | 1.0 | 13500(137) | 350 | 1/1 | 36 | 90 | [ |
Ag/HAP | 0.5 | 7200(570) | 250 | 4/1 | 18 | 100 | [ |
Ag/OMS | 5.0 | 100000(72) | 170 | 1/9 | 53 | 58 | [ |
Ag-Li/Al2O3 | 1.9 | 2500 (75) | 350 | 1/1 | 100 | 95 | [ |
Ag-Ce/SiO2 | 1.0 | 18000 (72) | 240 | 1/9 | 98 | 82 | [ |
Ag/MgCuCr2O4 | 1.0 | 36000(1515) | 250 | 1/3 | 10 | 99 | [ |
Table 2
Comparison of several Au-based catalysts for selective oxidation of ethanol"
催化剂 | Au/(wt%) | 反应条件 | 乙醇转化率 /% | 乙醛选择性 /% | 文献 | ||
GHSVa /(mL·gcat–1·h–1) | T/℃ | EtOH/O2 (摩尔比) | |||||
Au/MgCuCr2O4 | 1.0 | 100000(1515) | 250 | 1/3 | 100 | 95 | [ |
Au/CuSiO3 | 1.0 | 100000(1515) | 250 | 1/3 | 98 | 93 | [ |
Au/MoO3 | 1.0 | 20000(154) | 240 | 1/3 | 95 | 95 | [ |
Au/Silicon-1 | 1 | 30000(1436) | 200 | 1/1 | 50 | 98 | [ |
Au-Fe/MnO2 | 1 | 100000(2500) | 200 | 1/1 | 89 | 96 | [ |
Au-CuOx/SiO2 | 3.6 | 6000(2300) | 300 | 1/3 | 90 | 90 | [ |
1 | JAKOB B, SLIMANI I, DIEHL A, et al. Palladium-catalyzed decarboxylative 1,2-addition of carboxylic acids to glyoxylic acid esters[J]. European Journal of Organic Chemistry, 2021, 46: 6340-6346. |
2 | NIU K, ZHOU P, DING L, et al. Photoelectrochemical decarboxylative C-H alkylation of quinoxalin-2(1H)-ones. ACS Sustainable Chemistry & Engineering, 2021, 9 (49): 16820- 16828. |
3 | FAN B, TRANT J F, WONG A D, et al. Polyglyoxylates: A versatile class of triggerable self-immolative polymers from readily accessible monomers. Journal of the American Chemical Society, 2014, 136 (28): 10116- 10123. |
4 | 张建斌. 香兰素制备技术研究进展及前景展望. 广东化工, 2018, 45 (12): 163- 166. |
5 | 肖铭. 乙二醛氧化合成乙醛酸技术研究进展. 精细与专用化学品, 2020, 28 (3): 39- 41. |
6 | 张新胜, 陈银生, 戴迎春. 草酸电解还原制备乙醛酸的放大研究. 精细化工, 2000, (S1): 37- 39. |
7 | 潘美平. 乙醇酸氧化酶重组毕赤酵母的构建及其催化合成乙醛酸工艺条件初步优化 [D]. 福建 厦门: 厦门大学, 2008. |
8 | TRIVEDI N R, CHANDALIA S B. Synthesis of alkyl glyoxylates. Organic Process Research & Development, 1998, 2 (5): 332- 333. |
9 | 龚海燕, 孙凤侠, 刘俊涛. 强酸树脂催化合成乙醛酸甲酯. 工业催化, 2021, 29 (3): 77- 80. |
10 | 张志霞, 朱全, 刘超, 等. 乙醛酸酯的合成工艺研究. 河北师范大学学报(自然科学版), 2012, 36 (6): 597- 600. |
11 | BAUCHEREL X, UZIEL J, JUGE S. Unexpected catalyzed C=C bond cleavage by molecular oxygen promoted by a thiyl radical. Journal of Organic Chemistry, 2001, 66 (13): 4504- 4510. |
12 | ZHUANG W, JORGENSEN K A. Friedel-crafts reactions in water of carbonyl compounds with heteroaromatic compounds. Chemical Communications, 2002, (13): 1336- 1337. |
13 | 于玲, 刘福胜, 于世涛. 臭氧氧化法合成乙醛酸乙酯. 精细化工, 2012, 29 (2): 205- 208. |
14 | KELLY T R, SCHMIDT T E, HAGGERTY G J. A convenient preparation of methyl and ethyl glyoxylate. Synthesis, 1972, (10): 544- 545. |
15 | VARGHA L, REMENYI M. Selective oxidations with red lead [J]. Journal of the Chemical Society 1951(12): 1068-1069. |
16 | 河井清益, 清浦忠光. グリオキシル酸またはグリオキシル酸エステルの製造方法: JP2680691B2 [P]. 1989-07-25. |
17 | 朱坚. 草酸二甲酯加氢: Ni-foam结构化Ni基合金催化剂及定向转化的合金催化效应 [D]. 上海: 华东师范大学, 2020. |
18 | SUN J, YU J F, MA Q X, et al. Freezing copper as a noble metal-like catalyst for preliminary hydrogenation. Science Advances, 2018, 4 (12): 3275- 3286. |
19 | YIN A Y, GUO X Y, DAI W L, et al. High activity and selectivity of Ag/SiO2 catalyst for hydrogenation of dimethyl oxalate . Chemical Communications, 2010, 46 (24): 4348- 4350. |
20 | CHEN H M, TAN J J, ZHU Y L, et al. An effective and stable Ni2P/TiO2 catalyst for the hydrogenation of dimethyl oxalate to methyl glycolate . Catalysis Communications, 2016, 73, 46- 49. |
21 | 龚海燕, 刘俊涛, 刘国强. 乙醇酸酯氧化生成乙醛酸酯的方法: CN1122354542A [P]. 2020-08-07. |
22 | 李国华, 莫晓璐, 潘剑明. 一种V2O5-CuO/TiO2催化剂及其制备方法和应用: CN1122354542A [P]. 2021-02-12. |
23 | 王灿. 乙醇酸氧化酶的分子改造及其在乙醛酸甲酯合成中的应用 [D]. 杭州: 浙江工业大学, 2020. |
24 | 邓景发, 项一非, 叶良云, 等. 甲醇在电结晶银催化剂上催化氧化制浓甲醛. 催化学报, 1983, (4): 266- 271. |
25 | CHOWDHRY U, FERRETTI A, FIRMENT L E, et al. Mechanism and surface structural effects in methanol oxidation over molybdates. Applications of Surface Science, 1984, 19 (1): 360- 372. |
26 | HOUSE M P, CARLEY A F, BOWKER M. Selective oxidation of methanol on iron molybdate catalysts and the effects of surface reduction. Journal of Catalysis, 2007, 252 (1): 88- 96. |
27 | ZHAO G, YANG F, CHEN Z, et al. Metal/oxide interfacial effects on the selective oxidation of primary alcohols. Nature Communications, 2017, (8): 14039. |
28 | XU J, XU X C, YANG X J, et al. Silver/hydroxyapatite foam as a highly selective catalyst for acetaldehyde production via ethanol oxidation. Catalysis Today, 2016, 276, 19- 27. |
29 | GRABCHENKO M V, MAMONTOV G V, ZAIKOVSKII V I, et al. Design of Ag-CeO2/SiO2 catalyst for oxidative dehydrogenation of ethanol: Control of Ag-CeO2 interfacial interaction . Catalysis Today, 2019, 333, 2- 9. |
30 | MA L, JIA L H, GUO X F, et al. Catalytic activity of Ag/SBA-15 for low-temperature gas-phase selective oxidation of benzyl alcohol to benzaldehyde. Chinese Journal of Catalysis, 2014, 35 (1): 108- 119. |
31 | SHI J, QI T, SUN B C, et al. Catalytic oxidation of benzyl alcohol over MnO2: Structure-activity description and reaction mechanism . Chemical Engineering Journal, 2022, 440, 135802- 135823. |
32 | ZHAO G F, FAN S Y, TAO L G, et al. Titanium-microfiber-supported binary-oxide nanocomposite with a large highly active interface for the gas-phase selective oxidation of benzyl alcohol. ChemCatChem, 2016, 8 (2): 313- 317. |
33 | 王晋海, 邓景发. 乙二醇在电解银表面的氧化. 催化学报, 1994, (4): 250- 256. |
34 | VODYANKINA O V, BLOKHINA A S, KURZINA I A, et al. Selective oxidation of alcohols over Ag-containing Si3N4 catalysts . Catalysis Today, 2013, 203, 127- 132. |
35 | RANA P H, PARIKH P A. Bioethanol selective oxidation to acetaldehyde over Ag-CeO2: Role of metal-support interactions . New Journal of Chemistry, 2017, 41 (7): 2636- 2641. |
36 | DUTOV V V, MAMONTOV G V, SOBOLEV V I, et al. Silica-supported silver-containing OMS-2 catalysts for ethanol oxidative dehydrogenation. Catalysis Today, 2016, 278, 164- 173. |
37 | SILBAUGH T L, DEVLAMINCK P, SOFRANKO J A, et al. Selective oxidation of ethanol over Ag, Cu and Au nanoparticles supported on Li2O/γ-Al2O3. Journal of Catalysis, 2018, 364, 40- 47. |
38 | LIU P, ZHU X C, YANG S B, et al. On the metal-support synergy for selective gas-phase ethanol oxidation over MgCuCr2O4 supported metal nanoparticle catalysts . Journal of Catalysis, 2015, 331, 138- 146. |
39 | HUTCHINGS G J. Vapor phase hydrochlorination of acetylene: Correlation of catalytic activity of supported metal chloride catalysts. Journal of Catalysis, 1985, 96 (1): 292- 295. |
40 | HARUTA M M, KOBAYASHI T, SANO H, et al. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0℃. Chemistry Letters, 1987, 16, 405- 408. |
41 | SHARMA A, KAUR H, SHAH D. Selective oxidation of alcohols by supported gold nanoparticles: Recent advances. RSC Advances, 2016, (6): 28688- 28727. |
42 | SINHA A K, SEELAN S, TSUBOTA S, et al. A three-dimensional mesoporous titanosilicate support for gold nanoparticles: Vapor-phase epoxidation of propene with high conversion. Angewandte Chemie-International Edition, 2004, 43 (12): 1546- 1548. |
43 | YAO S, ZHANG X, ZHOU W, et al. Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction. Science, 2017, 357 (6349): 389- 393. |
44 | BORONAT M, CONCEPCIÓN P, CORMA A, et al. A Molecular mechanism for the chemoselective hydrogenation of substituted nitroaromatics with nanoparticles of gold on TiO2 catalysts: A cooperative effect between gold and the support . Journal of the American Chemical Society, 2007, 129 (51): 16230- 16237. |
45 | ISHIDA T, MURAYAMA T, TAKETOSHI A, et al. Importance of size and contact structure of gold nanoparticles for the genesis of unique catalytic processes. Chemical Reviews, 2020, 120 (2): 464- 525. |
46 | SANKAR M, HE Q, ENGEL R V, et al. Role of the support in gold-containing nanoparticles as heterogeneous catalysts. Chemical Reviews, 2020, 120 (8): 3890- 3938. |
47 | PARK J Y, BAKER L R, SOMORJAI G A. Role of hot electrons and metal-oxide interfaces in surface chemistry and catalytic reactions. Chemica Reviews, 2015, 115 (8): 2781- 2817. |
48 | LI T, LIU F, TANG Y, et al. Maximizing the number of interfacial sites in single-atom catalysts for the highly selective, solvent-free oxidation of primary alcohols. Angewandte Chemie-International Edition, 2018, 57 (26): 7795- 7799. |
49 | ZHAO G F, HU H Y, DENG M M, et al. Microstructured Au/Ni-fiber catalyst for low-temperature gas-phase selective oxidation of alcohols. Chemical Communication, 2011, 47 (34): 9642- 9644. |
50 | GUO F F, CHEN J A, HUANG Y. A bifunctional N-heterocyclic carbene as a noncovalent organocatalyst for enantioselective aza-michael addition reactions. ACS Catalysis, 2021, 11 (10): 6316- 6324. |
51 | LIU P, HENSEN E J. Highly efficient and robust Au/MgCuCr2O4 catalyst for gas-phase oxidation of ethanol to acetaldehyde . Journal of the American Chemical Society, 2013, 135 (38): 14032- 14035. |
52 | DU X J, FU N H, ZHANG S L, et al. Au/CuSiO3 nanotubes: High-performance robust catalysts for selective oxidation of ethanol to acetaldehyde . Nano Research, 2016, 9 (9): 2681- 2686. |
53 | TAKEI T, IGUCHI N, HARUTA M. Support effect in the gas phase oxidation of ethanol over nanoparticulate gold catalysts. New Journal of Chemistry, 2011, 35 (10): 2227- 2233. |
54 | MIELBY J, ABILDSTROM J O, WANG F, et al. Oxidation of bioethanol using zeolite-encapsulated gold nanoparticles. Angewandte Chemie-International Edition, 2014, 53 (46): 12513- 12516. |
55 | WANG P P, LUO H M, WANG J W, et al. Synergistic effect between gold nanoparticles and Fe-doped γ-MnO2 toward enhanced aerobic selective oxidation of ethanol . Catalysis Science & Technology, 2020, 10 (13): 4332- 4339. |
56 | BAUER J C, VEITH G M, ALLARD L F, et al. Silica-supported Au-CuOx hybrid nanocrystals as a ctive and selective catalysts for the formation of acetaldehyde from the oxidation of ethanol . ACS Catalysis, 2012, 2 (12): 2537- 2546. |
57 | BEALE A M, JACQUES S D M, SACALIUC P E, et al. An iron molybdate catalyst for methanol to formaldehyde conversion prepared by a hydrothermal method and its characterization. Applied Catalysis A: General, 2009, 363 (1): 143- 152. |
58 | LAITINEN T, OJALA S, COUSIN R, et al. Activity, selectivity, and stability of vanadium catalysts in formaldehyde production from emissionsof volatile organic compounds. Journal of Industrial and Engineering Chemistry, 2020, 83, 375- 386. |
59 | OEFNER N, HECK F, DURL M, et al. Activity, selectivity and initial degradation of iron molybdate in the oxidative dehydrogenation of ethanol [J]. ChemCatChem, 2022, 14(4). DOI: 10.1002/cctc.202101219. |
60 | KILOS B, BELL A T, IGLESIA E. Mechanism and site requirements for ethanol oxidation on vanadium oxide domains. The Journal of Physical Chemistry C, 2009, 113 (7): 2830- 2836. |
61 | ZABILSKA A, CLARK A H, MOSKOWITZ B M, et al. Redox dynamics of active VOx sites promoted by TiOx during oxidative dehydrogenation of ethanol detected by operando quick XAS . JACS Au, 2022, 2 (3): 762- 776. |
62 | 赵国锋, 张智强, 朱坚, 等. 结构催化剂与反应器: 新结构、新策略和新进展. 化工进展, 2018, 37 (4): 1287- 1304. |
63 | SHEN J, SHAN W, ZHANG Y H, et al. Gas-phase selective oxidation of alcohols: In situ electrolytic nano-silver/zeolite film/copper grid catalyst. Journal of Catalysis, 2006, 237 (1): 94- 101. |
64 | DENG M M, ZHAO G F, XUE Q S, et al. Microfibrous-structured silver catalyst for low-temperature gas-phase selective oxidation of benzyl alcohol. Applied Catalysis B: Environmental, 2010, 99 (1): 222- 228. |
65 | ZHAO G F, HU H Y, DENG M M, et al. Au/Cu-fiber catalyst with enhanced low-temperature activity and heat transfer for the gas-phase oxidation of alcohols. Green Chemistry, 2011, 13 (1): 55- 58. |
66 | ZHAO G F, HUANG J, JIANG Z, et al. Microstructured Au/Ni-fiber catalyst for low-temperature gas-phase alcohol oxidation: Evidence of Ni2O3-Au+ hybrid active sites . Applied Catalysis B: Environmental, 2013, 140/141, 249- 257. |
[1] | Jiaxiang CHEN, Zhejuan ZHANG, Er NIE, Yenan SONG, Xianqing PIAO, Zhuo SUN. Preparation and photocatalysis properties of I-TiO2/Sr2MgSi2O7:Eu,Dy composite photocatalyst [J]. Journal of East China Normal University(Natural Science), 2022, 2022(6): 157-168. |
[2] | WU Wei;YU Ke;ZHU Zi-qiang. Fabrication of two-dimensional photonic crystal based on polystyrene template [J]. Journal of East China Normal University(Natural Sc, 2010, 2010(5): 103-109. |
[3] | DONG Peng-fei;HAN Jing;SHAO Qi-wei;CHENG Rong-ming. Study on the photocatalytic property of ZnO nanorod/PVC composite (Chinese) [J]. Journal of East China Normal University(Natural Sc, 2009, 2009(5): 29-39,8. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||