Journal of East China Normal University(Natural Science) ›› 2023, Vol. 2023 ›› Issue (1): 160-169.doi: 10.3969/j.issn.1000-5641.2023.01.016
• Biomass Conversion and Chemical Recource Recycle • Previous Articles
Lei ZHAO1, Zelin LI1, Bolong LI1, Shuchang BIAN2, Jianhua WANG2, Hailan ZHANG2, Chen ZHAO1,*()
Received:
2022-06-15
Accepted:
2022-09-21
Online:
2023-01-25
Published:
2023-01-07
Contact:
Chen ZHAO
E-mail:czhao@chem.ecnu.edu.cn
CLC Number:
Lei ZHAO, Zelin LI, Bolong LI, Shuchang BIAN, Jianhua WANG, Hailan ZHANG, Chen ZHAO. Comprehensive review on green synthesis of bio-based 2,5-furandicarboxylic acid[J]. Journal of East China Normal University(Natural Science), 2023, 2023(1): 160-169.
1 | FANG Z, SMITH R L, QI X H. Production of Platform Chemicals from Sustainable Resources [M]. Singapore: Springer, 2017. |
2 | WU X C, WEI W, JIANG J W, et al. High-flux high-selectivity metal-organic framework MIL-160 membrane for xylene isomer separation by pervaporation. Angewandte Chemie-International Edition, 2018, 57 (47): 15354- 15358. |
3 | BURGESS S K, LEISEN J E, KRAFTSCHIK B E, et al. Chain mobility, thermal, and mechanical properties of poly(ethylene furanoate) compared to poly(ethylene terephthalate). Macromolecules, 2014, 47 (4): 1383- 1391. |
4 | BURGESS S K, KRIEGEL R M, KOROS W J. Carbon dioxide sorption and transport in amorphous poly(ethylene furanoate). Macromolecules, 2015, 48 (7): 2184- 2193. |
5 | JIANG M, LIU Q, ZHANG Q, et al. A series of furan-aromatic polyesters synthesized via direct esterification method based on renewable resources. Journal of Polymer Science Part A: Polymer Chemistry, 2012, 50 (5): 1026- 1036. |
6 | LEWKOWSKI J. Convenient synthesis of furan-2,5-dicarboxylic acid and its derivatives [J]. Polish Journal of Chemistry, 2001, 75: 1943-1946. |
7 | TAGUCHI Y, OISHI A, IIDA H. One-step synthesis of dibutyl furandicarboxylates from galactaric acid. Chemistry Letters, 2008, 37 (1): 50- 51. |
8 | ZHANG D H, DUMONT M J. Advances in polymer precursors and bio-based polymers synthesized from 5-hydroxymethylfurfural. Journal of Polymer Science Part A: Polymer Chemistry, 2017, 55 (9): 1478- 1492. |
9 | ZHAO D, DELBECQ F, LEN C. One-pot FDCA diester synthesis from mucic acid and their solvent-free regioselective polytran-sesterification for production of glycerol-based furanic polyesters [J]. Molecules, 2019, 24: 1030. |
10 | 李伟杰, 陆豫. 合成3,4-二取代呋喃-2,5-二甲酸的简便方法. 化学试剂, 2006, (5): 309- 310. |
11 | 陈天明, 林鹿. 高锰酸钾法制备2,5-呋喃二甲酸. 化学试剂, 2011, 33 (1): 11- 12. |
12 | 常萌, 黄关葆, 徐曼嘉. 生物基2,5-呋喃二甲酸的制备. 塑料, 2014, 43 (1): 75- 77. |
13 | MIURA T, KAKINUMA H, KAWANO T, et al. Preparation of furan-2,5-dicarboxylic acid by oxidizing furan ring compounds: 20070232815 [P]. 2007-10-14. |
14 | 宋开贺, 苏坤梅, 李振环. 5-羟甲基糠醛催化合成2,5-呋喃二甲酸的研究. 现代化工, 2019, 39 (9): 135- 140. |
15 | LI S, SU K M, LI Z H, et al. Selective oxidation of 5-hydroxymethylfurfural with H2O2 catalyzed by a molybdenum complex . Green Chemistry, 2016, 18 (7): 2122- 2128. |
16 | CHEN C T, NGUYEN C V, WANG Z Y, et al. Hydrogen peroxide assisted selective oxidation of 5-hydroxymethylfurfural in water under mild conditions. ChemCatChem, 2018, 10 (2): 361- 365. |
17 | HANSEN T S, SÁDABA I, GARCÍA-SUÁREZ E J, et al. Cu catalyzed oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran and 2,5-furandicarboxylic acid under benign reaction conditions. Applied Catalysis A: General, 2013, 456, 44- 50. |
18 | GAWADE A B, NAKHATE A V, YADAV G D. Selective synthesis of 2,5-furandicarboxylic acid by oxidation of 5-hydroxy-methylfurfural over MnFe2O4 catalyst[J]. Catal Today, 2018, 309: 119-125. |
19 | CHEN C, WANG L, ZHU B, et al. 2,5-Furandicarboxylic acid production via catalytic oxidation of 5-hydroxymethylfurfural: Catalysts, processes and reaction mechanism. Journal of Energy Chemistry, 2021, 54, 528- 554. |
20 | ZHANG Z, DENG K. Recent advances in the catalytic synthesis of 2,5-furandicarboxylic acid and its derivatives. ACS Catalysis, 2015, 5 (11): 6529- 6544. |
21 | DAVIS S E, HOUK L R, TAMARGO E C, et al. Oxidation of 5-hydroxymethylfurfural over supported Pt, Pd and Au catalysts. Catalysis Today, 2011, 160 (1): 55- 60. |
22 | SIYO B, SCHNEIDER M, RADNIK J, et al. Influence of support on the aerobic oxidation of HMF into FDCA over preformed Pd nanoparticle based materials. Applied Catalysis A: General, 2014, 478, 107- 116. |
23 | WANG Y, YU K, LEI D, et al. Basicity-tuned hydrotalcite-supported Pd catalysts for aerobic oxidation of 5-hydroxymethyl-2-furfural under mild conditions. ACS Sustainable Chemistry & Engineering, 2016, 4 (9): 4752- 4761. |
24 | FERRAZ C P, ZIELIŃSKI M, PIETROWSKI M, et al. Influence of support basic sites in green oxidation of biobased substrates using Au-promoted catalysts. ACS Sustainable Chemistry & Engineering, 2018, 6 (12): 16332- 16340. |
25 | GAO T, CHEN J, FANG W, et al. Ru/MnXCe1OY catalysts with enhanced oxygen mobility and strong metal-support interaction: Exceptional performances in 5-hydroxymethylfurfural base-free aerobic oxidation . Journal of Catalysis, 2018, 368, 53- 68. |
26 | XIE J, NIE J, LIU H. Aqueous-phase selective aerobic oxidation of 5-hydroxymethylfurfural on Ru/C in the presence of base. Chinese Journal of Catalysis, 2014, 35 (6): 937- 944. |
27 | SILVA E D D, GONZALEZ W A, FRAGA M A. Aqueous-phase oxidation of 5-hydroxymethylfurfural over Pt/ZrO2 catalysts: Exploiting the alkalinity of the reaction medium and catalyst basicity . Green Processing and Synthesis, 2016, 5 (4): 353- 364. |
28 | LIU Y, MA H Y, LEI D, et al. Active oxygen species promoted catalytic oxidation of 5-hydroxymethyl-2-furfural on facet-specific Pt nanocrystals. ACS Catalysis, 2019, 9 (9): 8306- 8315. |
29 | KE C, LI M, FAN G, et al. Pt nanoparticles supported on nitrogen-doped-carbon-decorated CeO2 for base-free aerobic oxidation of 5-hydroxymethylfurfural . Chemistry-An Asian Journal, 2018, 13 (18): 2714- 2722. |
30 | ZHOU C, DENG W, WAN X, et al. Functionalized carbon nanotubes for biomass conversion: The base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over platinum supported on a carbon nanotube catalyst. ChemCatChem, 2015, 7 (18): 2853- 2863. |
31 | HAN X, LI C, GUO Y, et al. N-doped carbon supported Pt catalyst for base-free oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. Applied Catalysis A: General, 2016, 526, 1- 8. |
32 | DAVIS S E, ZOPE B N, DAVIS R J. On the mechanism of selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over supported Pt and Au catalysts. Green Chemistry, 2012, 14 (1): 143- 147. |
33 | GORBANEV Y Y, KEGNS S, RIISAGER A. Selective aerobic oxidation of 5-hydroxymethylfurfural in water over solid ruthenium hydroxide catalysts with magnesium-based supports. Catalysis Letters, 2011, 141 (12): 1752- 1760. |
34 | CASANOVA O, IBORRA S, CORMA A. Biomass into chemicals: Aerobic oxidation of 5-hydroxymethyl-2-furfural into 2,5-furandicarboxylic acid with gold nanoparticle catalysts. ChemSusChem, 2009, 2 (12): 1138- 1144. |
35 | MIAO Z, ZHANG Y, PAN X, et al. Superior catalytic performance of Ce1−xBixO2−δ solid solution and Au/Ce1−xBixO2−δ for 5-hydroxymethylfurfural conversion in alkaline aqueous solution . Catalysis Science & Technology, 2015, 5 (2): 1314- 1322. |
36 | LI Q, WANG H, TIAN Z, et al. Selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over Au/CeO2 catalysts: the morphology effect of CeO2. Catalysis Science & Technology, 2019, 9 (7): 1570- 1580. |
37 | CHENG X, LI S, LIU S, et al. Highly efficient catalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid using bimetallic Pt-Cu alloy nanoparticles as catalysts. Chemical Communications, 2022, 58 (8): 1183- 1186. |
38 | HAYASHI E, YAMAGUCHI Y, KAMATA K, et al. Effect of MnO2 crystal structure on aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid . Journal of the American Chemical Society, 2019, 141 (2): 890- 900. |
39 | LIU X, LUO Y, MA H, et al. Hydrogen-binding-initiated activation of o−h bonds on a nitrogen-doped surface for the catalytic oxidation of biomass hydroxyl compounds. Angewandte Chemie-International Edition, 2021, 60 (33): 18103- 18110. |
40 | YOU B, LIU X, JIANG N, et al. A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization. Journal of the American Chemical Society, 2016, 138 (41): 13639- 13646. |
41 | BARWE S, WEIDNER J, CYCHY S, et al. Electrocatalytic oxidation of 5-(hydroxymethyl)furfural using high-surface-area nickel boride. Angewandte Chemie-International Edition, 2018, 57 (35): 11460- 11464. |
42 | ZHANG N N, ZOU Y Q, TAO L, et al. Electrochemical oxidation of 5-hydroxymethylfurfural on nickel nitride/carbon nanosheets: reaction pathway determined by in situ sum frequency generation vibrational spectroscopy. Angewandte Chemie-International Edition, 2019, 58 (44): 15895- 15903. |
43 | ZHANG P, SHENG X, CHEN X, et al. Paired electrocatalytic oxygenation and hydrogenation of organic substrates with water as the oxygen and hydrogen source. Angewandte Chemie-International Edition, 2019, 58 (27): 9155- 9159. |
44 | CHA H G, CHOI K S. Combined biomass valorization and hydrogen production in a photoelectrochemical cell. Nature Chemistry, 2015, 7 (4): 328- 333. |
45 | BANERJEE A, DICK G R, YOSHINO T, et al. Carbon dioxide utilization via carbonate-promoted C-H carboxylation . Nature, 2016, 531 (7593): 215- 219. |
46 | RAECKE B. Synthesis of di- and tricarboxylic acids of aromatic ring systems through shifting of carboxyl groups. Angewandte Chemie, 1958, 70, 1- 5. |
47 | PAN T, DENG J, XU Q, et al. Catalytic conversion of furfural into a 2,5-furandicarboxylic acid-based polyester with total carbon utilization. ChemSusChem, 2013, 6 (1): 47- 50. |
48 | SHEN G F, ZHANG S C, LEI Y, et al. Synthesis of 2,5-furandicarboxylic acid by catalytic carbonylation of renewable furfural derived 5-bromofuroic acid. Molecular Catalysis, 2018, 455, 204- 209. |
49 | 刘浪, 杨顺利, 李鸿波, 等. 2,5-呋喃二甲酸的合成. 精细化工, 2011, 28 (4): 410- 412. |
50 | 李伟杰. 氯化亚铁催化合成呋喃-2,5-二甲酸及其二甲酯. 化学试剂, 2013, 35 (8): 767- 768. |
51 | WANG J G, LIU X Q, ZHU J. From furan to high quality bio-based poly(ethylene furandicarboxylate). Chinese Journal of Polymer Science, 2018, 36 (6): 720- 727. |
52 | 赵峰鸣, 李姗姗, 朱英红, 等. 活性氧化镍电极电催化合成二甘醇酸. 化工学报, 2008, 59 (S1): 88- 92. |
53 | DE DIEGO C M, DAM M A, GRUTER G J M. Methods for production of 2,5-furandicarboxylic acid and dialkyl 2,5-furandicarboxylates: WO2011043661 [P]. 2011-04-14. |
54 | 赵晨, 李愽龙, 赵磊. 一种2, 5-呋喃二甲酸的合成方法: 111187238 [P]. 2020-05-22. |
55 | 赵晨, 赵磊, 李愽龙. 一种从糠醛生产呋喃二甲酸及其衍生物的方法: 111153876 [P]. 2020-05-15. |
[1] | Dan CUI, Ying LI, Tida CHEN, Minsheng HUANG. Analysis and evaluation of the phytoplankton community structure in Luxun Park, Shanghai [J]. Journal of East China Normal University(Natural Science), 2022, 2022(3): 27-38. |
[2] | LI Shi-hua, XIE Li-na, CHEN Wei, FEI Bei-li, YUAN Lin, GE Zhen-ming. Comparison of growth and photosynthesis characteristics of native and exotic salt marsh vegetation under elevated temperature and waterlogging conditions [J]. Journal of East China Normal University(Natural Sc, 2019, 2019(1): 144-155. |
[3] | YU Na;LI Yun-kai;SUN Xin-jin;CHEN Li-qiao. Abundance and biomass of meiobenthos in the sea areasof Yangshan Deepwater Port(Chinese) [J]. Journal of East China Normal University(Natural Sc, 2008, 2008(2): 22-29. |
[4] | DAI Ya-qi;XIONG Yun-qing;YOU Wen-hui. The Impacts of Dredging on the Community and Structure of the Micro-invertebrate in Suzhou Creek [J]. Journal of East China Normal University(Natural Sc, 2003, 2003(3): 83-87. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||