1 |
QI S H, NING X, YANG G W, et al.. Review of multi-view 3D object recognition methods based on deep learning. Displays, 2021, 69, 102053.
doi: 10.1016j.displa.2021.102053
|
2 |
FENG Y F, ZHANG Z Z, ZHAO X B, et al. GVCNN: Group-view convolutional neural networks for 3D shape recognition [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2018: 264-272. DOI: 10.1109/CVPR.2018.00035.
|
3 |
GAO Z, WANG D Y, HE X G, et al. Group-pair convolutional neural networks for multi-view based 3d object retrieval [C]// Proceedings of the AAAI Conference on Artificial Intelligence. AAAI, 2018: 2223-2231. DOI: 10.1007/s10489-021-02471-7.
|
4 |
SU H, MAJI S, KALOGERAKIS E, et al. Multi-view convolutional neural networks for 3D shape recognition [C]// Proceedings of the IEEE International Conference on Computer Vision. IEEE, 2015: 945-953. DOI:10.1109ICCV.2015.114.
|
5 |
SUN K, ZHANG J H, LIU J M, et al.. DRCNN: Dynamic routing convolutional neural network for multi-view 3D object recognition. IEEE Transactions on Image Processing, 2020, 30, 868- 877.
doi: 10.1109TIP.2020.3039378
|
6 |
DAI G X, XIE J, FANG Y. Siamese CNN-BILSTM architecture for 3D shape representation learning [C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI-18). AAAI, 2018: 670-676. DOI: 10.24963ijcai.201893.
|
7 |
WEI X, YU R X, SUN J. View-gcn: View-based graph convolutional network for 3d shape analysis [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2020: 1850-1859. DOI :10.1109CVPR42600.2020.00192.
|
8 |
HO C H, MORGADO P, PERSEKIAN A, et al. PIEs: Pose Invariant embeddings [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2019: 12369-12378. DOI: 10.1109/CVPR.2019.01266.
|
9 |
AGRAWAL P, CARREIRA J, MALIK J. Learning to see by moving [C]// Proceedings of the IEEE International Conference on Computer Vision. IEEE, 2015: 37-45. DOI: 10.1109/ICCV.2015.13.
|
10 |
JAYARAMANU D, GAO R, GRAUMAN K. Unsupervised learning through one-shot image-based shape reconstruction [EB/OL]. (2018-07-31)[2022-04-27]. https://arxiv.org/abs/1709.00505v1.
|
11 |
NOROOZI M, FAVARO P. Unsupervised learning of visual representations by solving jigsaw puzzles [C]// European Conference on Computer Vision, Computer Vision – ECCV 2016 . Cham: Springer. 2016: 69-84. DOI: 10.1007/978-3-319-46466-4_5.
|
12 |
HE K M, CHEN X L, XIE S N, et al. Masked autoencoders are scalable vision learners [C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2022: 15979-15988. DOI: 10.1109/CVPR52688.2022.01553.
|
13 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth $ 16\times16 $ words: Transformers for image recognition at scale [EB/OL]. (2021-06-03)[2022-04-28]. https://doi.org/10.48550/arXiv.2010.11929.
|
14 |
HE K M, FAN H Q, WU Y X, et al. Momentum contrast for unsupervised visual representation learning [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2020: 9729-9738. DOI: 10.1109/CVPR42600.2020.00975.
|
15 |
CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations [C]// Proceedings of the 37th International Conference on Machine Learning( ICML’20). The Journal of Machine Learning Research (JMLR), 2020: 1597-1607. DOI: 10.5555/3524938.3525087.
|
16 |
CHEN X L, HE K M. Exploring simple siamese representation learning [C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2021: 15745-15753. DOI: 10.1109/CVPR46437.2021.01549.
|
17 |
YE M, ZHANG X, YUEN P C, et al. Unsupervised embedding learning via invariant and spreading instance feature [C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2019: 6203-6212. DOI: 10.1109/CVPR.2019.00637.
|
18 |
KANEZAKI A, MATSUSHITA Y, NISHIDA Y. RotationNet: Joint object categorization and pose estimation using multiviews from unsupervised viewpoints [C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2018: 5010-5019. DOI:10.1109/CVPR.2018.00526.
|
19 |
SONG R, ZHANG W, ZHAO Y T, et al. Unsupervised multi-view CNN for salient view selection of 3D objects and scenes [C]//European Conference on Computer Vision, Computer Vision – ECCV 2020. Cham: Springer, 2020: 454-470. DOI: 10.1007/s11263- 022-01592-x.
|
20 |
HO C H, LIU B, WU T Y, et al. Exploit clues from views: Self-supervised and regularized learning for multiview object recognition [C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020: 9087-9097. DOI:10.1109/CVPR42600.2020.00911.
|
21 |
KINGMA D P, WELLING M. Auto-encoding variational bayes [EB/OL]. (2014-05-01)[2022-04-28]. https://arxiv.org/abs/1312.6114v10.
|
22 |
GOOGFELLOW I, BENGIO Y, COURVILLE A, et al. Deep Learning [M]. Cambridge, MA USA: MIT Press, 2016.
|
23 |
KINGMA D P, SALIMANS T, WELLING M. Variational dropout and the local reparameterization trick [C]// Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 2. Cambridge, MA USA: MIT Press. 2015: 2575-2583.
|
24 |
WU Z R, SONG S R, KHOSLA A, et al. 3D ShapeNets: A deep representation for volumetric shapes [C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2015: 1912-1920. DOI:10.1109/CVPR.2015.7298801.
|
25 |
CHANG A X, FUNKHOUSER T, Guibas L, et al. ShapeNet: An information-rich 3D model repository [EB/OL]. (2015-12-09)[2022-04-28]. https://arxiv.org/abs/1512.03012.
|
26 |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. (2015-04-10)[2022-04-28]. https://arxiv.org/abs/1409.1556v6.
|
27 |
DENG J, DONG W, SOCHER R, et al. ImageNet: A large-scale hierarchical image database [C]// 2009 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2009: 248-255. DOI:10.1109/CVPR.2009.5206848.
|
28 |
HOSPEDALES T, ANTONIOU A, MICAELLI P, et al.. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44 (9): 5149- 5169.
doi: 10.1109/TPAMI.2021.3079209
|
29 |
VAN DER M L, HINTON G.. Visualizing data using t-SNE. Journal of Machine Learning Research, 2008, 9, 2579- 2605.
|