1 |
NEWTON E M, SWEENEY L, MALIN B A.. Preserving privacy by de-identifying face images. IEEE Transactions on Knowledge and Data Engineering(TKDE), 2005, 17 (2): 232- 243.
|
2 |
LI Y F, NISHANT V, BART P K, et al. Blur vs. block: Investigating the effectiveness of privacy-enhancing obfuscation for images [C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPR workshops). IEEE , 2017: 1343-1351.
|
3 |
CHEN R, CHEN X, NI B, et al. SimSwap: An efficient framework for high fidelity face swapping [C]// 2020 ACM International Conference on Multimedia. ACM, 2020: 2003-2011.
|
4 |
XU Z L, YU X Y, HONG Z B, et al. FaceController: Controllable attribute editing for face in the wild [C]// 2021 AAAI Conference on Artificial Intelligence. AAAI , 2021: 3083-3091.
|
5 |
WANG Y H, CHEN X, ZHU J W, et al. HifiFace: 3D shape and semantic prior guided high fidelity face swapping [C]// 2021 Proceedings of the 30th International Joint Conference on Artificial Intelligence (IJCAI). IJCAI, 2021: 1136-1142.
|
6 |
GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets [C]// NIPS 14: Proceedings of the 27th International Conference on Neural Information Processing Systems-Volume 2. Cambridge, MA USA: MIT Press, 2014: 2672-2680.
|
7 |
WU Y F, YANG F, XU Y, et al.. Privacy-protective-GAN for privacy preserving face de-identification. Journal of Computer Science Technology, 2019, 34 (1): 47- 60.
|
8 |
GAFNI O, WOLF L, TAIGMAN Y. Live face de-identification in video [C]// 2019 IEEE International Conference on Computer Vision (ICCV). IEEE, 2019: 9377-9386.
|
9 |
MAXIMOV M, ELEZI I, LEAL-TAIXÉ L. CIAGAN: Conditional identity anonymization generative adversarial networks [C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020: 5446-5455.
|
10 |
GONG M G, LIU J, LI H, et al.. Disentangled representation learning for multiple attributes preserving face deidentification. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33 (1): 244- 256.
|
11 |
GU X Y, LUO W X, MICHAEL S, et al. Password-conditioned anonymization and deanonymization with face identity transformers [C]// European Conference on Computer Vision, Computer Vision – ECCV 2020. Cham: Springer, 2020: 727-743.
|
12 |
PROENÇA H. The UU-Net: Reversible face de-identification for visual surveillance video footage [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(2): 496-509.
|
13 |
GROSS R, SWEENEY, BAKER S, et al. Semi-supervised learning of multi-factor models for face de-identification [C]// 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2008. DOI: 10.1109/CVPR.2008.4587369. https://ieeexplore.ieee.org/document/4587369
|
14 |
TOLOSANA R, VERA R R, FIERREZ J.. Deepfakes and beyond: A survey of face manipulation and fake detection. Information Fusion, 2020, 64 (1): 131- 148.
|
15 |
ZHANG K P, ZHANG Z P, LI Z F, et al.. Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Processing Letters, 2016, 23 (10): 1499- 1503.
|
16 |
ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks [C]// 2017 IEEE International Conference on Computer Vision (ICCV). IEEE, 2017: 2242-2251.
|
17 |
OLAF R, PHILIPP F, THOMAS B. U-Net: Convolutional networks for biomedical image segmentation [C]// International Conference on Medical Image Computing and Computer-Assisted Intervention, Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Cham: Springer, 2015: 234-241.
|
18 |
ZHOU W, ALAN C B, HAMID R S, et al.. Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Process, 2004, 13 (4): 600- 612.
|
19 |
DENG J, GUO J, XUE N, et al. Arcface: Additive angular margin loss for deep face recognition [C]// 2019 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2019: 4690-4699.
|
20 |
LIU Z, LUO P, WANG X, et al. Deep learning face attributes in the wild [C]// 2015 IEEE International Conference on Computer Vision (ICCV). IEEE, 2015: 3730-3738.
|
21 |
KARL R, TAMIRAT T.. MORPH: A longitudinal image database of normal adult age-progression. IEEE International Conference on Automatic Face and Gesture (FGR), 2006, 1 (1): 341- 345.
|
22 |
HUANG G B, MATTAR M, BERG T, et al. Labeled faces in the wild: A database for studying face recognition in unconstrained environments [EB/OL]. [2022-04-05]. http://vis-www.cs.umass.edu/papers/lfw.pdf.
|
23 |
GUO Y D, ZHANG L, HU Y X, et al. Ms-celeb-1m: A dataset and benchmark for large-scale face recognition [C]// European Conference on Computer Vision (ECCV), Computer Vision – ECCV 2016. Cham: Springer, 2016: 87-102.
|
24 |
FLORIAN S, DMITRY K, JAMES P. FaceNet: A unified embedding for face recognition and clustering [C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2015: 815-823.
|
25 |
VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE [J]. Journal of Machine Learning Research, 2008(9): 2579-2605.
|