1 |
田永健, 付涛, 刘玉武, 等.. 基础教育数字化转型的实践探索. 中国电化教育, 2022, (8): 106- 132.
|
2 |
胡学钢, 刘菲, 卜晨阳.. 教育大数据中认知跟踪模型研究进展. 计算机研究与发展, 2020, 57 (12): 2523- 2546.
|
3 |
宋苏轩, 杨现民, 宋子强.. 教育信息化2.0背景下新一代高校智慧校园基础平台建设研究. 现代教育技术, 2019, 29 (8): 18- 24.
|
4 |
崔建伟, 赵哲, 杜小勇.. 支撑机器学习的数据管理技术综述. 软件学报, 2021, 32 (3): 604- 621.
|
5 |
高劲松, 方晓印, 刘思洋, 等.. 基于关联数据的馆藏文物资源知识关联与智能问答研究. 情报科学, 2021, 39 (5): 12- 20.
|
6 |
汪诚愚, 何晓丰, 宫学庆, 等.. 面向上下位关系预测的词嵌入投影模型. 计算机学报, 2020, 43 (5): 868- 883.
|
7 |
陈晓红, 曹廖滢, 陈姣龙, 等.. 我国算力发展的需求、电力能耗及绿色低碳转型对策. 中国科学院院刊, 2024, 39 (3): 528- 539.
|
8 |
宋杰, 李甜甜, 朱志良, 等.. 云数据管理系统能耗基准测试与分析. 计算机学报, 2013, 36 (7): 1485- 1499.
|
9 |
陈晓朋, 许可欣, 梁宇栋.. 人工智能促进数据中心绿色节能研究. 信息通信技术与政策, 2024, 50 (2): 33- 39.
|
10 |
PAPPAS S, EKONOMOU L, KARAMPELAS P, et al.. Electricity demand load forecasting of the hellenic power system using an ARMA model. Electric Power Systems Research, 2009, 80 (3): 256- 264.
|
11 |
LEE C M, KO C N.. Short-term load forecasting using lifting scheme and ARIMA models. Expert Systems With Applications, 2011, 38 (5): 5902- 5911.
|
12 |
CHAUHAN M, GUPTA S, SANDHU M.. Short-term electric load forecasting using support vector machines. ECS Transactions, 2022, 107 (1): 9731.
|
13 |
吴潇雨, 和敬涵, 张沛, 等.. 基于灰色投影改进随机森林算法的电力系统短期负荷预测. 电力系统自动化, 2015, 39 (12): 50- 55.
|
14 |
XIE Z Y, YANG Y, ZHANG Y L, et al.. Correction to: Deep learning on multi-view sequential data: A survey. Artificial Intelligence Review, 2022, 56 (8): 9009.
|
15 |
ELMAN J L.. Finding structure in time. Cognitive Science, 1990, 14 (2): 179- 211.
|
16 |
HOCHREITER S, SCHMIDHUBER J.. Long short-term memory. Neural Computation, 1997, 9 (8): 1735- 1780.
|
17 |
BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate [EB/OL]. (2015-03-22)[2024-06-20]. https://arxiv.org/pdf/1409.0473v5.
|
18 |
陈卓, 孙龙祥.. 基于深度学习LSTM网络的短期电力负荷预测方法. 电子技术, 2018, 47 (1): 39- 41.
|
19 |
CHO K, VAN MERRIENBOER B, GULCEHRE C. Learning phrase representations using RNN encoder–decoder for statistical machine translation [C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. 2014: 1724-1734.
|
20 |
MOBARAK A, YOUSEF A O, MAJDI O.. Electrical load forecasting using LSTM, GRU, and RNN algorithms. Energies, 2023, 16 (5): 2283.
|
21 |
GONG G J, AN X N, MAHATO K N, et al.. Research on short-term load prediction based on Seq2seq model. Energies, 2019, 12 (16): 3199.
|
22 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st Conference on Neural Information Processing Systems. 2017: 6000-6010.
|
23 |
SZÉKELY J G, RIZZO L M, BAKIROV K N.. Measuring and testing dependence by correlation of distances. The Annals of Statistics, 2007, 35 (6): 2769- 2794.
|
24 |
ZHOU H Y, ZHANG S H, PENG J Q, et al. Informer: Beyond efficient transformer for long sequence time-series forecasting [C]// Proceedings of the 35th Association for the Advancement of Artificial Intelligence. 2021: 11106-11115.
|
25 |
WU H X, XU J H, WANG J M, et al. Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting [C]// Proceedings of the 34th Advances in Neural Information Processing Systems. 2021: 22419-22430.
|