J* E* C* N* U* N* S* ›› 2025, Vol. 2025 ›› Issue (3): 51-60.doi: 10.3969/j.issn.1000-5641.2025.03.007
• Physics and Electronics • Previous Articles Next Articles
Received:
2024-03-25
Online:
2025-05-25
Published:
2025-05-28
Contact:
Yong XIA
E-mail:yxia@phy.ecnu.edu.cn
CLC Number:
Luping CAO, Yong XIA. Detection of high-resolution high-bandwidth fractional vortex beams under atmospheric turbulence[J]. J* E* C* N* U* N* S*, 2025, 2025(3): 51-60.
1 | ALLEN L, BEIJERSBERGEN M W, SPREEUW R J C, et al.. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A, 1992, 45 (11): 8185- 8189. |
2 | ZHOU Z Y, DING D S, JIANG Y K, et al.. Orbital angular momentum light frequency conversion and interference with quasi-phase matching crystals. Optics Express, 2014, 22 (17): 20298- 20310. |
3 | PADGETT M, BOWMAN R.. Tweezers with twist. Nature Photonics, 2011, 5 (6): 343- 348. |
4 | MAIR A, VAZIRI A, WEIHS G, et al.. Entanglement of the orbital angular momentum states of photons. Nature, 2001, 412 (6844): 313- 316. |
5 | PATERSON C.. Atmospheric turbulence and orbital angular momentum of single photons for optical communication. Physics Review Letters, 2005, 94 (15): 153901. |
6 | BOZINOVIC N, YUE Y, REN Y X, et al.. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 2013, 340 (6140): 1545- 1548. |
7 | HUANG H, MILIONE G, LAVERY M P J, et al.. Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre. Scientific Reports, 2015, 5 (1): 14931. |
8 | HUANG H, XIE G D, YAN Y, et al.. 100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength. Optics Letters, 2014, 39 (2): 197- 200. |
9 | LEACH J, PADGETT M J, BARNETT S M, et al.. Measuring the orbital angular momentum of a single photon. Physics Review Letters, 2002, 88 (25): 257901. |
10 | LI P Y, WANG B, SONG X B, et al.. Non-destructive identification of twisted light. Optics Letters, 2016, 41 (7): 1574- 1577. |
11 | ZHOU H L, SHI L, ZHANG X L, et al.. Dynamic interferometry measurement of orbital angular momentum of light. Optics Letters, 2014, 39 (20): 6058- 6061. |
12 | HICKMANN J M, FONSECA E J S, SOARES W C, et al.. Unveiling a truncated optical lattice associated with a triangular aperture using light’s orbital angular momentum. Physics Review Letters, 2010, 105 (5): 053904. |
13 | GHAI D P, SENTHILKUMARAN P, SIROHI R S.. Single-slit diffraction of an optical beam with phase singularity. Optics and Lasers in Engineering, 2009, 47 (1): 123- 126. |
14 | RASOULI S, FATHOLLAZADE S, AMIRI P.. Simple, efficient and reliable characterization of Laguerre-Gaussian beams with non-zero radial indices in diffraction from an amplitude parabolic-line linear grating. Optics Express, 2021, 29 (19): 29661- 29675. |
15 | DOSTER T, WATNIK A T.. Machine learning approach to OAM beam demultiplexing via convolutional neural networks. Applied Optics, 2017, 56 (12): 3386- 3396. |
16 | LOHANI S, GLASSER R T.. Turbulence correction with artificial neural networks. Optics Letters, 2018, 43 (11): 2611- 2614. |
17 | LIU Z W, YAN S, LIU H G, et al.. Superhigh-resolution recognition of optical vortex modes assisted by a deep-learning method. Physics Review Letters, 2019, 123 (18): 183902. |
18 | MAO Z X, YU H Y, XIA M, et al.. Broad bandwidth and highly efficient recognition of optical vortex modes achieved by the neural network approach. Physics Review Applied, 2020, 13 (3): 034063. |
19 | ZHANG N, DAVIS J A, MORENO I, et al.. Analysis of fractional vortex beams using a vortex grating spectrum analyzer. Applied Optics, 2010, 49 (13): 2456- 2462. |
20 | HUANG H C, LIN Y T, SHIH M F.. Measuring the fractional orbital angular momentum of a vortex light beam by cascaded Mach–Zehnder interferometers. Optics Communications, 2012, 285 (4): 383- 388. |
21 | ZHU J, ZHANG P, FU D Z, et al.. Probing the fractional topological charge of a vortex light beam by using dynamic angular double slits. Photonics Research, 2016, 4 (5): 187- 190. |
22 | DENG D, LIN M C, Li Y, et al.. Precision measurement of fractional orbital angular momentum. Physical Review Applied, 2019, 12 (1): 014048. |
23 | NA Y, KO D K.. Deep-learning-based high-resolution recognition of fractional-spatial-mode-encoded data for free-space optical communications. Scientific Reports, 2021, 11 (1): 2678. |
24 | JING G Q, CHEN L Z, WANG P P, et al.. Recognizing fractional orbital angular momentum using feed forward neural network. Results in Physics, 2021, 28, 104619. |
25 | NA Y, KO D K.. Adaptive demodulation by deep learning based identification of fractional orbital angular momentum modes with structural distortion due to atmospheric turbulence. Scientific Reports, 2021, 11 (1): 23505. |
26 | ZHOU J W, YIN Y L, TANG J H, et al.. Recognition of high-resolution optical vortex modes with deep residual learning. Physical Review A, 2022, 106 (1): 013519. |
27 | TIAN Q H, LI Z, HU K, et al.. Turbo-coded 16-ary OAM shift keying FSO communication system combining the CNN-based adaptive demodulator. Optics Express, 2018, 26 (21): 27849- 27864. |
28 | CAO M, YIN Y L, ZHOU J W, et al.. Machine learning based accurate recognition of fractional optical vortex modes in atmospheric environment. Applied Physics Letters, 2021, 119 (14): 141103. |
29 | GOPAUL C, ANDREW R.. The effect of atmospheric turbulence on entangled orbital angular momentum states. New Journal of Physics, 2007, 9 (4): 94. |
30 | ZHAO S M, LEACH J, GONG L Y, et al.. Aberration corrections for free-space optical communications in atmosphere turbulence using orbital angular momentum states. Optics Express, 2012, 20 (1): 452- 461. |
31 | ANDREWS L C.. An analytical model for the refractive index power spectrum and its application to optical scintillations in the atmosphere. Journal of Modern Optics, 1992, 39 (9): 1849- 1853. |
32 | 高春清, 付时尧. 涡旋光束[M]. 北京: 清华大学出版社, 2019: 205. |
33 | XIE S N, GIRSHICK R, DOLLAR P, et al. Aggregated Residual Transformations for deep neural networks [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2017: 1492-1500. |
[1] | Caidie HUANG, Xinping WANG, Liangyu CHEN, Yong LIU. Research on a knowledge tracking model based on the stacked gated recurrent unit residual network [J]. Journal of East China Normal University(Natural Science), 2022, 2022(6): 68-78. |
[2] | Yilin MA, Huiling TAO, Qiwen DONG, Ye WANG. Prediction of remaining useful life of aeroengines based on the Transformer with multi-feature fusion [J]. Journal of East China Normal University(Natural Science), 2022, 2022(5): 219-232. |
[3] | Zejie WANG, Chaomin SHEN, Chun ZHAO, Xinmei LIU, Jie CHEN. Recognition of classroom learning behaviors based on the fusion of human pose estimation and object detection [J]. Journal of East China Normal University(Natural Science), 2022, 2022(2): 55-66. |
[4] | Bo LIU, Xiaodong BAI, Gengxin ZHANG, Jun SHEN, Jidong XIE, Laiding ZHAO, Tao HONG. Review of deep learning in cognitive radio [J]. Journal of East China Normal University(Natural Science), 2021, 2021(1): 36-52. |
[5] | ZHANG Xu, HUANG Dingjiang. Defect detection on aluminum surfaces based on deep learning [J]. Journal of East China Normal University(Natural Science), 2020, 2020(6): 105-114. |
[6] | HAN Chengcheng, LI Lei, LIU Tingting, GAO Ming. Approaches for semantic textual similarity [J]. Journal of East China Normal University(Natural Science), 2020, 2020(5): 95-112. |
[7] | YANG Kang, HANG Ding-jiang, GAO Ming. A review of machine reading comprehension for automatic QA [J]. Journal of East China Normal University(Natural Sc, 2019, 2019(5): 36-52. |
[8] | CHEN Yuan-zhe, KUANG Jun, LIU Ting-ting, GAO Ming, ZHOU Ao-ying. A survey on coreference resolution [J]. Journal of East China Normal University(Natural Sc, 2019, 2019(5): 16-35. |
[9] | LIU Heng-yu, ZHANG Tian-cheng, WU Pei-wen, YU Ge. A review of knowledge tracking [J]. Journal of East China Normal University(Natural Sc, 2019, 2019(5): 1-15. |
[10] | YE Jian, ZHAO Hui. A public opinion analysis model based on Danmu data monitoring and sentiment classification [J]. Journal of East China Normal University(Natural Sc, 2019, 2019(3): 86-100. |
[11] | YUAN Pei-sen, ZHANG Yong, LI Mei-ling, GU Xing-jian. Research on trademark image retrieval based on deep Hashing [J]. Journal of East China Normal University(Natural Sc, 2018, 2018(5): 172-182. |
[12] | YU Ruo-nan, HUANG Ding-jiang, DONG Qi-wen. Survey on scene text detection based on deep learning [J]. Journal of East China Normal University(Natural Sc, 2018, 2018(5): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||