Predictions of suitable distribution of Meteorium in China under climate change

  • LIU Yan
Expand
  • College of Life Sciences, Chongqing Normal University, Chongqing 401331, China

Received date: 2015-12-18

  Online published: 2017-01-13

Abstract

According to 166 geographic distribution records of six Meteorium species and 19 bioclimatic variables, the present study employed both Maximum entropy (Maxent) model and the spatial analysis methods in the ArcGIS 10.2 to predict the potential distribution of Meteorium in China and compare the range size of each projection under different climate scenarios, in order to provide scientific evidence of the impact of ongoing climate change for bryophytes’ distribution. The results showed that temperature annual range, mean temperature of coldest quarter, temperature seasonality (standard deviation *100) and max temperature of warmest month were the major factors influencing the distribution of Meteorium in China. Under current climate condition, the suitable distribution of Meteorium located in large parts of southern Qin Ling and Huai River. While in future climate scenarios (i.e. 2050s and 2070s), both of the ranges were predicted to decrease slightly. It will become 94.48% and 95.78% of the current suitable area in 2050s and 2070s, respectively.

Cite this article

LIU Yan . Predictions of suitable distribution of Meteorium in China under climate change[J]. Journal of East China Normal University(Natural Science), 2016 , 2016(6) : 192 -202 . DOI: 10.3969/j.issn.1000-5641.2016.06.021

References

[1] KELLY A E, GOULDEN M L. Rapid shifts in plant distribution with recent climate change [C]//Proceedings of the National Academy of Sciences of the United States of America. USA: HighWire Press, 2008, 105(33): 11823-11826.
[2] DULLINGER S, GATTRINGER A, THUILLER W, et al. Extinction debt of high-mountain plants under twenty-first-century climate change [J]. Nature Climate Change, 2012, 2(8): 619-622.
[3] THUILLER W, LAVOREL S, ARAUJO M B, et al. Climate change threats to plant diversity in Europe [C]//Proceedings of the National Academy of Sciences of the United States of America. USA: HighWire Press, 2005, 102(23): 8245-8250.
[4] BELLARD C, BERTELSMEIER C, LEADLEY P, et al. Impacts of climate change on the future of biodiversity [J]. Ecology Letters, 2012,15(4): 365-377.
[5] MALCOLM J R, LIU C, NEILSON R P, et al. Global warming and extinction from biodiversity hotspots [J]. Conservation Biology, 2006, 20(2): 438-548.
[6] PHILLIPS S J, ANDERSON R P, SCHAPIRE R E. Maximum entropy modeling of species geographic distributions [J]. Ecological Modelling, 2006, 190(3): 231-259.
[7] KHANUM R, MUMTAZ A S, KUMAR S. Predicting impacts of climate change on medicinal asclepiads of Pakistan using Maxent modeling [J]. Acta Oecologica, 2013, 49: 23-31.
[8] LATINNE A, MEYNARD C N, HERBRETEAU V, et al. Influence of past and future climate changes on the distribution of three Southeast Asian murine rodents [J]. Journal of Biogeography, 2015, 42(9): 1714-1726.
[9] YUAN H S, WEI Y L, WANG X G. Maxent modeling for predicting the potential distribution of Sanghuang, an important group of medicinal fungi in China [J]. Fungal Ecology, 2015, 17: 140-145.
[10] DESAMOREA, LAENEN B, STECH M, et al. How do temperate bryophytes face the challenge of a changing environment? Lessons from the past and predictions for the future [J]. Global Change Biology, 2012, 18(9): 2915-2924.
[11] KRUIJER J D, NIELS R, MICHAEL S. Modelling the distribution of the moss species \textit{Hypopterygium tamarisci ](Hypopterygiaceae, Bryophyta) in central and south America [J]. Nova Hedwigia, 2010, 91(3/4): 399-420.
[12] 麻亚鸿, 李丹丹, 于晶, 等.中国蓑藓属与木灵藓属分布式样与气候因子的关系[J]. 生物多样性, 2013, 21(2): 177-184.
[13] SERGIO C, GARCIA C A, VIEIRA C, et al. Conservation of Portuguese red-listed bryophytes species in Portugal: Promoting a shift in perspective on climate changes [J]. Plant Biosystems, 2014, 148(4): 837-850.
[14] SERGIO C, FIGUEIRA R, DRAPER D. et al. Modelling bryophyte distribution based on ecological information for extent of occurrence assessment [J]. Biological Conservation, 2007, 135(3): 341-351.
[15] SERGIO C, FIGUEIRA R, MENEZES R. Modeling the distribution of Sematophyllum substrumulosum (Hampe) E. Britton as a signal of climatic changes in Europe [M]//TUBA Z, SLACK N G, STARK L R. Bryophyte Ecology and Climate Change. Cambridge: Cambridge University Press, 2011: 427-439.
[16] YU J, MA Y H, GUO S L. Modeling the geographic distribution of the epiphytic moss Macromitrium japonicum in China [J]. Annales Botanici Fennici, 2013, 50: 35-42.
[17] 于晶, 唐艳雪, 郭水良.基于GIS和MaxEnt比较中国砂藓属与紫萼藓属植物地理分布[J].植物科学学报, 2012, 30(5): 443-458.
[18] GIGNAC L D. Bryophytes as indicators of climate change [J].Bryologist, 2001, 104(3): 410-420.
[19] TUBA Z, SLACK N G, STARK L R. Bryophyte Ecology and Climate Change[M]. Cambridge: Cambridge University Press, 2011.
[20] WU P C, CROSBY M R, HE S. Moss Flora of China [M].  English version, Vol 5. Beijing: Science Press & St. Louis: Missouri Botanical Garden Press, 2011.
[21] 陈家伟, 俞英, 陈子林, 等. 浙江大盘山国家级自然保护区藓类植物区系研究[J]. 南京林业大学学报(自然科学版), 2009, 33(1):74-78.
[22] 邓佳佳, 熊源新, 刘伟才, 等. 贵州省岩下大鲵自然保护区苔藓植物区系调查[J]. 山地农业生物学报, 2008, 27(2): 123-126.
[23] 何林. 渝东南地区苔藓植物物种多样性研究[D]. 贵阳: 贵州大学,2005: 52.
[24] 何祖霞, 严岳鸿, 马其侠, 等. 湖南丹霞地貌区的苔藓植物多样性[J].生物多样性, 2012, 20(4): 522-526.
[25] HE Z X, ZHANG L, XIE G Z, et al. A preliminary list of mosses from Shimentai nature reserve, Guangdong [J]. Journal of Tropical and Subtropical Botany, 2004, 12(6): 541-551.
[26] 贾鹏, 熊源新, 王美会, 等. 广西猫街鸟类自然保护区苔藓植物初步研究[J]. 贵州大学学报(自然科学版), 2010, 27(6): 55-62.
[27] 李祖凰. 四川省贡嘎山藓类植物区系地理与群落研究[D]. 上海:上海师范大学, 2012: 107, 126.
[28] 李祖凰, 于晶, 曹同, 等. 四川王朗自然保护区藓类植物初报[J].贵州师范大学学报(自然科学版), 2010, 28(4): 156-161.
[29] 毛俐慧. 澜沧江峡谷(云龙--德钦段)藓类区系研究[D]. 浙江金华:浙江师范大学, 2010: 52-53.
[30] 裴林英. 蔓藓属(Meteorium)的分类学修订[D]. 上海:华东师范大学, 2010: 35-90.
[31] 彭晓馨. 贵州百里杜鹃林区苔藓植物名录及分布类型~ [J].贵州大学学报(农业与生物科学版), 2002, 21(6): 414-419.
[32] 王美会, 熊源新, 贾鹏, 等. 贵州龙头大山自然保护区苔藓植物研究[J]. 山地农业生物学报, 2010, 29(5): 381-386.
[33] 熊源新, 杨志平. 鄂西南地区苔藓植物区系研究~ [J].山地农业生物学报, 2006, 25(6): 510-518.
[34] 徐力, 熊源新, 王美会, 等.云南富宁县木洪大山苔藓植物区系研究[J]. 山地农业生物学报, 2010, 29(6): 475-481.
[35] 杨冰, 熊源新, 韩敏敏, 等. 贵州省独山都柳江源湿地自然保护区苔藓植物区系研究[J]. 贵州林业科技, 2013, 41(1): 5-11, 21.
[36] 曾国驱, 林邦娟. 粤北石灰岩地区的藓类植物[J].热带亚热带植物学报, 2001, 9(2): 113-122.
[37] PEARSON G R, DAWSON T P, LIU C. Modelling species distributions in Britain: A hierarchical integration of climate and land-cover data [J]. Ecography, 2004, 27(3): 285-298.
[38] FIELDING A H, BELL J F. A review of methods for the assessment of prediction errors in conservation presence/absence models [J].Environmental Conservation, 1997, 24(1): 38-49.
[39] SWETS J A. Measuring the accuracy of diagnostic systems [J].Science, 1988, 240(4587): 1285-1293.
[40] IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2013.
[41] FRAHM J P, KLAUS D. Bryophytes as indicators of recent climate fluctuations in Central Europe [J]. Lindbergia, 2001, 26(2): 97-104.
[42] ENGLER R, RANDIN C F, VITTOZ P, et al. Predicting future distributions of mountain plants under climate change: Does dispersal capacity matter? [J]. Ecography, 2009, 32(1): 34-45.

Outlines

/