Journal of East China Normal University(Natural Science) >
Comprehensive review on green synthesis of bio-based 2,5-furandicarboxylic acid
Received date: 2022-06-15
Accepted date: 2022-09-21
Online published: 2023-01-07
Bio-based 2,5-furandicarboxylic acid (FDCA) is expected to partially replace petroleum-based terephthalic acid (PTA) for the synthesis of high-performance polymer materials. This review article summarizes the latest achievements on the various synthesis routes of FDCA from 5-hydroxymethylfurfural (HMF), furoic acid, furan, diglycolic acid, hexaric acid, 2,5-dimethylfuran, and 2-methylfuran. In particular, the direct oxidation, heterogeneous thermal catalytic oxidation, photoelectric catalytic oxidation of HMF and furoic acid carboxylation, disproportionation, carbonylation, and other routes to synthesize FDCA are reviewed in detail. Based on the comparative analysis of the advantages and disadvantages of each route, the HMF route and the furoic acid route are considered the most promising candidates for the large-scale production of FDCA. Further exploration and future research should be carried out to improve the catalytic production and separation efficiency of FDCA, simplify the reaction process, and reduce production wastes.
Lei ZHAO , Zelin LI , Bolong LI , Shuchang BIAN , Jianhua WANG , Hailan ZHANG , Chen ZHAO . Comprehensive review on green synthesis of bio-based 2,5-furandicarboxylic acid[J]. Journal of East China Normal University(Natural Science), 2023 , 2023(1) : 160 -169 . DOI: 10.3969/j.issn.1000-5641.2023.01.016
1 | FANG Z, SMITH R L, QI X H. Production of Platform Chemicals from Sustainable Resources [M]. Singapore: Springer, 2017. |
2 | WU X C, WEI W, JIANG J W, et al. High-flux high-selectivity metal-organic framework MIL-160 membrane for xylene isomer separation by pervaporation. Angewandte Chemie-International Edition, 2018, 57 (47): 15354- 15358. |
3 | BURGESS S K, LEISEN J E, KRAFTSCHIK B E, et al. Chain mobility, thermal, and mechanical properties of poly(ethylene furanoate) compared to poly(ethylene terephthalate). Macromolecules, 2014, 47 (4): 1383- 1391. |
4 | BURGESS S K, KRIEGEL R M, KOROS W J. Carbon dioxide sorption and transport in amorphous poly(ethylene furanoate). Macromolecules, 2015, 48 (7): 2184- 2193. |
5 | JIANG M, LIU Q, ZHANG Q, et al. A series of furan-aromatic polyesters synthesized via direct esterification method based on renewable resources. Journal of Polymer Science Part A: Polymer Chemistry, 2012, 50 (5): 1026- 1036. |
6 | LEWKOWSKI J. Convenient synthesis of furan-2,5-dicarboxylic acid and its derivatives [J]. Polish Journal of Chemistry, 2001, 75: 1943-1946. |
7 | TAGUCHI Y, OISHI A, IIDA H. One-step synthesis of dibutyl furandicarboxylates from galactaric acid. Chemistry Letters, 2008, 37 (1): 50- 51. |
8 | ZHANG D H, DUMONT M J. Advances in polymer precursors and bio-based polymers synthesized from 5-hydroxymethylfurfural. Journal of Polymer Science Part A: Polymer Chemistry, 2017, 55 (9): 1478- 1492. |
9 | ZHAO D, DELBECQ F, LEN C. One-pot FDCA diester synthesis from mucic acid and their solvent-free regioselective polytran-sesterification for production of glycerol-based furanic polyesters [J]. Molecules, 2019, 24: 1030. |
10 | 李伟杰, 陆豫. 合成3,4-二取代呋喃-2,5-二甲酸的简便方法. 化学试剂, 2006, (5): 309- 310. |
11 | 陈天明, 林鹿. 高锰酸钾法制备2,5-呋喃二甲酸. 化学试剂, 2011, 33 (1): 11- 12. |
12 | 常萌, 黄关葆, 徐曼嘉. 生物基2,5-呋喃二甲酸的制备. 塑料, 2014, 43 (1): 75- 77. |
13 | MIURA T, KAKINUMA H, KAWANO T, et al. Preparation of furan-2,5-dicarboxylic acid by oxidizing furan ring compounds: 20070232815 [P]. 2007-10-14. |
14 | 宋开贺, 苏坤梅, 李振环. 5-羟甲基糠醛催化合成2,5-呋喃二甲酸的研究. 现代化工, 2019, 39 (9): 135- 140. |
15 | LI S, SU K M, LI Z H, et al. Selective oxidation of 5-hydroxymethylfurfural with H2O2 catalyzed by a molybdenum complex . Green Chemistry, 2016, 18 (7): 2122- 2128. |
16 | CHEN C T, NGUYEN C V, WANG Z Y, et al. Hydrogen peroxide assisted selective oxidation of 5-hydroxymethylfurfural in water under mild conditions. ChemCatChem, 2018, 10 (2): 361- 365. |
17 | HANSEN T S, SáDABA I, GARCíA-SUáREZ E J, et al. Cu catalyzed oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran and 2,5-furandicarboxylic acid under benign reaction conditions. Applied Catalysis A: General, 2013, 456, 44- 50. |
18 | GAWADE A B, NAKHATE A V, YADAV G D. Selective synthesis of 2,5-furandicarboxylic acid by oxidation of 5-hydroxy-methylfurfural over MnFe2O4 catalyst[J]. Catal Today, 2018, 309: 119-125. |
19 | CHEN C, WANG L, ZHU B, et al. 2,5-Furandicarboxylic acid production via catalytic oxidation of 5-hydroxymethylfurfural: Catalysts, processes and reaction mechanism. Journal of Energy Chemistry, 2021, 54, 528- 554. |
20 | ZHANG Z, DENG K. Recent advances in the catalytic synthesis of 2,5-furandicarboxylic acid and its derivatives. ACS Catalysis, 2015, 5 (11): 6529- 6544. |
21 | DAVIS S E, HOUK L R, TAMARGO E C, et al. Oxidation of 5-hydroxymethylfurfural over supported Pt, Pd and Au catalysts. Catalysis Today, 2011, 160 (1): 55- 60. |
22 | SIYO B, SCHNEIDER M, RADNIK J, et al. Influence of support on the aerobic oxidation of HMF into FDCA over preformed Pd nanoparticle based materials. Applied Catalysis A: General, 2014, 478, 107- 116. |
23 | WANG Y, YU K, LEI D, et al. Basicity-tuned hydrotalcite-supported Pd catalysts for aerobic oxidation of 5-hydroxymethyl-2-furfural under mild conditions. ACS Sustainable Chemistry & Engineering, 2016, 4 (9): 4752- 4761. |
24 | FERRAZ C P, ZIELI?SKI M, PIETROWSKI M, et al. Influence of support basic sites in green oxidation of biobased substrates using Au-promoted catalysts. ACS Sustainable Chemistry & Engineering, 2018, 6 (12): 16332- 16340. |
25 | GAO T, CHEN J, FANG W, et al. Ru/MnXCe1OY catalysts with enhanced oxygen mobility and strong metal-support interaction: Exceptional performances in 5-hydroxymethylfurfural base-free aerobic oxidation . Journal of Catalysis, 2018, 368, 53- 68. |
26 | XIE J, NIE J, LIU H. Aqueous-phase selective aerobic oxidation of 5-hydroxymethylfurfural on Ru/C in the presence of base. Chinese Journal of Catalysis, 2014, 35 (6): 937- 944. |
27 | SILVA E D D, GONZALEZ W A, FRAGA M A. Aqueous-phase oxidation of 5-hydroxymethylfurfural over Pt/ZrO2 catalysts: Exploiting the alkalinity of the reaction medium and catalyst basicity . Green Processing and Synthesis, 2016, 5 (4): 353- 364. |
28 | LIU Y, MA H Y, LEI D, et al. Active oxygen species promoted catalytic oxidation of 5-hydroxymethyl-2-furfural on facet-specific Pt nanocrystals. ACS Catalysis, 2019, 9 (9): 8306- 8315. |
29 | KE C, LI M, FAN G, et al. Pt nanoparticles supported on nitrogen-doped-carbon-decorated CeO2 for base-free aerobic oxidation of 5-hydroxymethylfurfural . Chemistry-An Asian Journal, 2018, 13 (18): 2714- 2722. |
30 | ZHOU C, DENG W, WAN X, et al. Functionalized carbon nanotubes for biomass conversion: The base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over platinum supported on a carbon nanotube catalyst. ChemCatChem, 2015, 7 (18): 2853- 2863. |
31 | HAN X, LI C, GUO Y, et al. N-doped carbon supported Pt catalyst for base-free oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. Applied Catalysis A: General, 2016, 526, 1- 8. |
32 | DAVIS S E, ZOPE B N, DAVIS R J. On the mechanism of selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over supported Pt and Au catalysts. Green Chemistry, 2012, 14 (1): 143- 147. |
33 | GORBANEV Y Y, KEGNS S, RIISAGER A. Selective aerobic oxidation of 5-hydroxymethylfurfural in water over solid ruthenium hydroxide catalysts with magnesium-based supports. Catalysis Letters, 2011, 141 (12): 1752- 1760. |
34 | CASANOVA O, IBORRA S, CORMA A. Biomass into chemicals: Aerobic oxidation of 5-hydroxymethyl-2-furfural into 2,5-furandicarboxylic acid with gold nanoparticle catalysts. ChemSusChem, 2009, 2 (12): 1138- 1144. |
35 | MIAO Z, ZHANG Y, PAN X, et al. Superior catalytic performance of Ce1?xBixO2?δ solid solution and Au/Ce1?xBixO2?δ for 5-hydroxymethylfurfural conversion in alkaline aqueous solution . Catalysis Science & Technology, 2015, 5 (2): 1314- 1322. |
36 | LI Q, WANG H, TIAN Z, et al. Selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over Au/CeO2 catalysts: the morphology effect of CeO2. Catalysis Science & Technology, 2019, 9 (7): 1570- 1580. |
37 | CHENG X, LI S, LIU S, et al. Highly efficient catalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid using bimetallic Pt-Cu alloy nanoparticles as catalysts. Chemical Communications, 2022, 58 (8): 1183- 1186. |
38 | HAYASHI E, YAMAGUCHI Y, KAMATA K, et al. Effect of MnO2 crystal structure on aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid . Journal of the American Chemical Society, 2019, 141 (2): 890- 900. |
39 | LIU X, LUO Y, MA H, et al. Hydrogen-binding-initiated activation of o?h bonds on a nitrogen-doped surface for the catalytic oxidation of biomass hydroxyl compounds. Angewandte Chemie-International Edition, 2021, 60 (33): 18103- 18110. |
40 | YOU B, LIU X, JIANG N, et al. A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization. Journal of the American Chemical Society, 2016, 138 (41): 13639- 13646. |
41 | BARWE S, WEIDNER J, CYCHY S, et al. Electrocatalytic oxidation of 5-(hydroxymethyl)furfural using high-surface-area nickel boride. Angewandte Chemie-International Edition, 2018, 57 (35): 11460- 11464. |
42 | ZHANG N N, ZOU Y Q, TAO L, et al. Electrochemical oxidation of 5-hydroxymethylfurfural on nickel nitride/carbon nanosheets: reaction pathway determined by in situ sum frequency generation vibrational spectroscopy. Angewandte Chemie-International Edition, 2019, 58 (44): 15895- 15903. |
43 | ZHANG P, SHENG X, CHEN X, et al. Paired electrocatalytic oxygenation and hydrogenation of organic substrates with water as the oxygen and hydrogen source. Angewandte Chemie-International Edition, 2019, 58 (27): 9155- 9159. |
44 | CHA H G, CHOI K S. Combined biomass valorization and hydrogen production in a photoelectrochemical cell. Nature Chemistry, 2015, 7 (4): 328- 333. |
45 | BANERJEE A, DICK G R, YOSHINO T, et al. Carbon dioxide utilization via carbonate-promoted C-H carboxylation . Nature, 2016, 531 (7593): 215- 219. |
46 | RAECKE B. Synthesis of di- and tricarboxylic acids of aromatic ring systems through shifting of carboxyl groups. Angewandte Chemie, 1958, 70, 1- 5. |
47 | PAN T, DENG J, XU Q, et al. Catalytic conversion of furfural into a 2,5-furandicarboxylic acid-based polyester with total carbon utilization. ChemSusChem, 2013, 6 (1): 47- 50. |
48 | SHEN G F, ZHANG S C, LEI Y, et al. Synthesis of 2,5-furandicarboxylic acid by catalytic carbonylation of renewable furfural derived 5-bromofuroic acid. Molecular Catalysis, 2018, 455, 204- 209. |
49 | 刘浪, 杨顺利, 李鸿波, 等. 2,5-呋喃二甲酸的合成. 精细化工, 2011, 28 (4): 410- 412. |
50 | 李伟杰. 氯化亚铁催化合成呋喃-2,5-二甲酸及其二甲酯. 化学试剂, 2013, 35 (8): 767- 768. |
51 | WANG J G, LIU X Q, ZHU J. From furan to high quality bio-based poly(ethylene furandicarboxylate). Chinese Journal of Polymer Science, 2018, 36 (6): 720- 727. |
52 | 赵峰鸣, 李姗姗, 朱英红, 等. 活性氧化镍电极电催化合成二甘醇酸. 化工学报, 2008, 59 (S1): 88- 92. |
53 | DE DIEGO C M, DAM M A, GRUTER G J M. Methods for production of 2,5-furandicarboxylic acid and dialkyl 2,5-furandicarboxylates: WO2011043661 [P]. 2011-04-14. |
54 | 赵晨, 李愽龙, 赵磊. 一种2, 5-呋喃二甲酸的合成方法: 111187238 [P]. 2020-05-22. |
55 | 赵晨, 赵磊, 李愽龙. 一种从糠醛生产呋喃二甲酸及其衍生物的方法: 111153876 [P]. 2020-05-15. |
/
〈 |
|
〉 |