Physics and Electronics

Quantum entanglement of molecular dipole arrays trapped in an optical lattice

  • Wenjing YUE ,
  • Qi WEI
Expand
  • State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China

Received date: 2022-03-07

  Online published: 2023-07-25

Abstract

For a polar molecule subjected to an external electric field, its molecular axis will oscillate around the direction of the electric field, forming pendular states. Taking the two lowest-lying pendular states with magnetic quantum number $M=0 $ as qubit states, we study quantum entanglement of polar molecular arrays trapped in a one-dimensional optical lattice. We evaluate pairwise concurrence and global entanglement as functions of three dimensionless variables related to external field intensity–permanent dipole moment, a rotation constant, dipole-dipole interaction, and temperature —thus revealing the properties of the entangled molecular dipole arrays.

Cite this article

Wenjing YUE , Qi WEI . Quantum entanglement of molecular dipole arrays trapped in an optical lattice[J]. Journal of East China Normal University(Natural Science), 2023 , 2023(4) : 74 -85 . DOI: 10.3969/j.issn.1000-5641.2023.04.008

References

1 FEYNMAN R P. Simulating physics with computers. International Journal of Theoretical Physics, 1982, 21 (6): 467- 488.
2 H?FFNER H, ROOS C F, BLATT R. Quantum computing with trapped ions. Physics Reports, 2008, 469 (4): 155- 203.
3 FENG M. Quantum computing with trapped ions in an optical cavity via Raman transition. Physical Review A, 2002, 66 (5): 054303.
4 SUTHERLAND R T, SRINIVAS R. Universal hybrid quantum computing in trapped ions. Physical Review A, 2021, 104 (3): 032609.
5 LOSS D, DIVINCENZO D P. Quantum computation with quantum dots. Physical Review A, 1998, 57 (1): 120- 126.
6 LEE J, LI Z B, YAO D X. Quantum computation with two-dimensional graphene quantum dots. Chinese Physics B, 2012, 21 (1): 017302.
7 XUE Z Y, ZHU S L, WANG Z D. Quantum computation in a decoherence-free subspace with superconducting devices. The European Physical Journal D, 2009, 55, 223- 228.
8 DORAI K, ARVIND, KUMAR A. Implementing quantum-logic operations, pseudopure states, and the Deutsch-Jozsa algorithm using noncommuting selective pulses in NMR. Physical Review A, 2000, 61 (4): 042306.
9 VANDERSYPEN L M K, CHUANG I L. NMR techniques for quantum control and computation. Reviews of Modern Physics, 2004, 76 (4): 1037.
10 DEMILLE D. Quantum computation with trapped polar molecules. Physical Review Letters, 2002, 88 (6): 067901.
11 ROMALIS M V, GRIFFITH W C, JACOBS J P, et al. New limit on the permanent electric dipole moment of 199Hg . Physical Review Letters, 2001, 86 (12): 2505.
12 MURTHY S A, KRAUSE D, LI Z L, et al. New limits on the electron electric dipole moment from cesium. Physical Review Letters, 1989, 63 (9): 965.
13 VOID T G, RAAB F J, HECKEL B, et al. Search for a permanent electric dipole moment on the 129Xe atom . Physical Review Letters, 1984, 52 (25): 2229.
14 MATERA R. L. Theoretical analysis of the electronic structure and molecular properties of the alkali halides. III. Sodium chloride. The Journal of Chemical Physics, 1968, 48 (1): 335.
15 IGEL-MANN G, WEDIG U, FUENTEALBA P, et al. Ground-state properties of alkali dimers XY (X, Y=Li to Cs)a). The Journal of Chemical Physics, 1986, 84 (9): 5007.
16 KAUFMAN M, WHARTON L, KLEMPERER W. Electronic structure of SrO. The Journal of Chemical Physics, 1965, 43 (3): 943- 952.
17 CARR L D, DEMILLE D, KREMS R V, et al. Cold and ultracold molecules: Science, technology and applications. New Journal of Physics, 2009, 11, 055049.
18 DULIEU O, GABBANINI C. The formation and interactions of cold and ultracold molecules: New challenges for interdisciplinary physics. Reports on Progress in Physics, 2009, 72, 086401.
19 ULMANIS J, DEIGLMAYR J, REPP M, et al. Ultracold molecules formed by photoassociation: Heteronuclear dimers, inelastic collisions, and interactions with ultrashort laser pulses. Chemical Reviews, 2012, 112, 4890- 4927.
20 DENG L, LIANG Y, GU Z, et al. Experimental demonstration of a controllable electrostatic molecular beam splitter. Physical Review Letters, 2011, 106 (14): 140401.
21 PELLEGRINI P, VRANCKX S, DESOUTER-LECOMTE M. Implementing quantum algorithms in hyperfine levels of ultracold polar molecules by optimal control. Physical Chemistry Chemical Physics, 2011, 13, 18864- 18871.
22 ZHU J, KAIS S, WEI Q, et al. Implementation of quantum logic gates using polar molecules in pendular states. The Journal of Chemical Physics, 2013, 138 (2): 024104.
23 ZHANG Z, LIU J, HU Z, et al. Implementation of three-qubit quantum computation with pendular states of polar molecules by optimal control. The Journal of Chemical Physics, 2020, 152, 044303.
24 WEI Q, KAIS S, FRIEDRICH B, et al. Entanglement of polar molecules in pendular states. The Journal of Chemical Physics, 2011, 134 (12): 124107.
25 MICHELI A, BRENNEN G K, ZOLLER P. A toolbox for lattice spin models with polar molecules. Nature Physics, 2006, 2, 341- 347.
26 CHARRON E, MILMAN P, KELLER A, et al. Quantum phase gate and controlled entanglement with polar molecules. Physical Review A, 2007, 75 (3): 033414.
27 KUZNETSOVA E, C?Té R, KIRBY K, et al. Analysis of experimental feasibility of polar-molecule-based phase gates. Physical Review A, 2008, 78 (1): 012313.
28 NI K-K, OSPELKAUS S, DE MIRANDA M H G, et al. A high phase-space-density gas of polar molecules. Science, 2008, 322, 231- 235.
29 DEIGLMAYR J, GROCHOLA A, REPP M, et al. Formation of ultracold polar molecules in the rovibrational ground state. Physical Review Letters, 2008, 101 (13): 133004.
30 WEI Q, KAIS S, CHEN Y P. Communications: Entanglement switch for dipole arrays. The Journal of Chemical Physics, 2010, 132 (12): 121104.
31 WEI Q, CAO Y D, KAIS S, et al. Quantum computation using arrays of N polar molecules in pendular states . ChemPhysChem, 2016, 17 (22): 3714- 3722.
32 NI K-K, ROSENBAND T, GRIMES D D. Dipolar exchange quantum logic gate with polar molecules. Chemical Science, 2018, (33): 6830- 6838.
33 WEI Q, KAIS S, FRIEDRICH B, et al. Entanglement of polar symmetric top molecules as candidate qubits. The Journal of Chemical Physics, 2011, 135 (15): 154102.
34 LIAO Y-Y. Bell states and entanglement of two-dimensional polar molecules in electric fields [J]. The European Physical Journal D, 2017, 71: Article number 277.
35 ZHANG Z Y, LIU J M. Quantum correlations and coherence of polar symmetric top molecules in pendular states. Scientific Reports, 2017, 7, 17822.
36 SCHR?DINGER E. The present status of quantum mechanics [J]. Die Naturwissenschaften, 1935, 23(48). https://homepages.dias.ie/dorlas/Papers/QMSTATUS.pdf.
37 WILK T, WEBSTER S C, KUHN A, et al. Single-atom single-photon quantum interface. Science, 2007, 317, 488- 490.
38 NEUMANN P, MIZUOCHI N, REMPP F, et al. Multipartite entanglement among single spins in diamond. Science, 2008, 320, 1326- 1329.
39 SHULMAN M D, DIAL O E, HARVEY S P, et al. Demonstration of entanglement of electrostatically coupled singlet-triplet qubits. Science, 2012, 336, 202- 205.
40 WEBER B, SPECHT H P, MüLLER T, et al. Photon-photon entanglement with a single trapped atom. Physical Review Letters, 2009, 102 (3): 030501.
41 VEDRAL V, PLENIO M B, RIPPIN M A, et al. Quantifying entanglement. Physical Review Letters, 1997, 78 (12): 2275- 2279.
42 BENNETT C H, DIVINCENZO D P, SMOLIN J A, et al. Mixed-state entanglement and quantum error correction. Physical Review A, 1996, 54 (5): 3824- 3851.
43 WOOTTERS W K. Entanglement of formation of an arbitrary state of two qubits. Physical Review Letters, 1998, 80 (10): 2245- 2248.
44 HILL S A, WOOTTERS W K. Entanglement of a pair of quantum bits. Physical Review Letters, 1997, 78 (26): 5022- 5025.
45 VIDAL G, WERNER R F. Computable measure of entanglement. Physical Review A, 2002, 65 (3): 032314.
46 VEDRAL V. The role of relative entropy in quantum information theory. Reviews of Modern Physics, 2002, 74 (1): 197- 234.
47 MEYER D A, WALLACH N R. Global entanglement in multiparticle systems. Journal of Mathematical Physics, 2002, 43 (9): 4273- 4278.
48 BRENNEN G K. An observable measure of entanglement for pure states of multi-qubit systems. Quantum Information and Computation, 2003, 3 (6): 619- 626.
Outlines

/