Journal of East China Normal University(Natural Science) ›› 2023, Vol. 2023 ›› Issue (4): 74-85.doi: 10.3969/j.issn.1000-5641.2023.04.008
• Physics and Electronics • Previous Articles Next Articles
Received:
2022-03-07
Online:
2023-07-25
Published:
2023-07-25
Contact:
Qi WEI
E-mail:qwei@admin.ecnu.edu.cn
CLC Number:
Wenjing YUE, Qi WEI. Quantum entanglement of molecular dipole arrays trapped in an optical lattice[J]. Journal of East China Normal University(Natural Science), 2023, 2023(4): 74-85.
Fig.8
The relationship between the pairwise concurrence $ {C_{12}} $ of a one-dimensional molecular chain system and $ {{kT} \mathord{\left/ {\vphantom {{kT} B}} \right. } B} $ , for different values of ${\varOmega \mathord{\left/ {\vphantom {\Omega B}} \right. } B}$ , $ {{\mu \varepsilon } \mathord{\left/ {\vphantom {{\mu \varepsilon } B}} \right. } B} $ "
Fig.11
The relationship between global entanglement and ${\varOmega \mathord{\left/ {\vphantom {\varOmega B}} \right. } B}$ for a one-dimensional molecular chain system consisting of $ N $ molecules, with different values of $ {{\mu \varepsilon } \mathord{\left/ {\vphantom {{\mu \varepsilon } B}} \right. } B} $ "
1 | FEYNMAN R P. Simulating physics with computers. International Journal of Theoretical Physics, 1982, 21 (6): 467- 488. |
2 | HÄFFNER H, ROOS C F, BLATT R. Quantum computing with trapped ions. Physics Reports, 2008, 469 (4): 155- 203. |
3 | FENG M. Quantum computing with trapped ions in an optical cavity via Raman transition. Physical Review A, 2002, 66 (5): 054303. |
4 | SUTHERLAND R T, SRINIVAS R. Universal hybrid quantum computing in trapped ions. Physical Review A, 2021, 104 (3): 032609. |
5 | LOSS D, DIVINCENZO D P. Quantum computation with quantum dots. Physical Review A, 1998, 57 (1): 120- 126. |
6 | LEE J, LI Z B, YAO D X. Quantum computation with two-dimensional graphene quantum dots. Chinese Physics B, 2012, 21 (1): 017302. |
7 | XUE Z Y, ZHU S L, WANG Z D. Quantum computation in a decoherence-free subspace with superconducting devices. The European Physical Journal D, 2009, 55, 223- 228. |
8 | DORAI K, ARVIND, KUMAR A. Implementing quantum-logic operations, pseudopure states, and the Deutsch-Jozsa algorithm using noncommuting selective pulses in NMR. Physical Review A, 2000, 61 (4): 042306. |
9 | VANDERSYPEN L M K, CHUANG I L. NMR techniques for quantum control and computation. Reviews of Modern Physics, 2004, 76 (4): 1037. |
10 | DEMILLE D. Quantum computation with trapped polar molecules. Physical Review Letters, 2002, 88 (6): 067901. |
11 | ROMALIS M V, GRIFFITH W C, JACOBS J P, et al. New limit on the permanent electric dipole moment of 199Hg . Physical Review Letters, 2001, 86 (12): 2505. |
12 | MURTHY S A, KRAUSE D, LI Z L, et al. New limits on the electron electric dipole moment from cesium. Physical Review Letters, 1989, 63 (9): 965. |
13 | VOID T G, RAAB F J, HECKEL B, et al. Search for a permanent electric dipole moment on the 129Xe atom . Physical Review Letters, 1984, 52 (25): 2229. |
14 | MATERA R. L. Theoretical analysis of the electronic structure and molecular properties of the alkali halides. III. Sodium chloride. The Journal of Chemical Physics, 1968, 48 (1): 335. |
15 | IGEL-MANN G, WEDIG U, FUENTEALBA P, et al. Ground-state properties of alkali dimers XY (X, Y=Li to Cs)a). The Journal of Chemical Physics, 1986, 84 (9): 5007. |
16 | KAUFMAN M, WHARTON L, KLEMPERER W. Electronic structure of SrO. The Journal of Chemical Physics, 1965, 43 (3): 943- 952. |
17 | CARR L D, DEMILLE D, KREMS R V, et al. Cold and ultracold molecules: Science, technology and applications. New Journal of Physics, 2009, 11, 055049. |
18 | DULIEU O, GABBANINI C. The formation and interactions of cold and ultracold molecules: New challenges for interdisciplinary physics. Reports on Progress in Physics, 2009, 72, 086401. |
19 | ULMANIS J, DEIGLMAYR J, REPP M, et al. Ultracold molecules formed by photoassociation: Heteronuclear dimers, inelastic collisions, and interactions with ultrashort laser pulses. Chemical Reviews, 2012, 112, 4890- 4927. |
20 | DENG L, LIANG Y, GU Z, et al. Experimental demonstration of a controllable electrostatic molecular beam splitter. Physical Review Letters, 2011, 106 (14): 140401. |
21 | PELLEGRINI P, VRANCKX S, DESOUTER-LECOMTE M. Implementing quantum algorithms in hyperfine levels of ultracold polar molecules by optimal control. Physical Chemistry Chemical Physics, 2011, 13, 18864- 18871. |
22 | ZHU J, KAIS S, WEI Q, et al. Implementation of quantum logic gates using polar molecules in pendular states. The Journal of Chemical Physics, 2013, 138 (2): 024104. |
23 | ZHANG Z, LIU J, HU Z, et al. Implementation of three-qubit quantum computation with pendular states of polar molecules by optimal control. The Journal of Chemical Physics, 2020, 152, 044303. |
24 | WEI Q, KAIS S, FRIEDRICH B, et al. Entanglement of polar molecules in pendular states. The Journal of Chemical Physics, 2011, 134 (12): 124107. |
25 | MICHELI A, BRENNEN G K, ZOLLER P. A toolbox for lattice spin models with polar molecules. Nature Physics, 2006, 2, 341- 347. |
26 | CHARRON E, MILMAN P, KELLER A, et al. Quantum phase gate and controlled entanglement with polar molecules. Physical Review A, 2007, 75 (3): 033414. |
27 | KUZNETSOVA E, CÔTÉ R, KIRBY K, et al. Analysis of experimental feasibility of polar-molecule-based phase gates. Physical Review A, 2008, 78 (1): 012313. |
28 | NI K-K, OSPELKAUS S, DE MIRANDA M H G, et al. A high phase-space-density gas of polar molecules. Science, 2008, 322, 231- 235. |
29 | DEIGLMAYR J, GROCHOLA A, REPP M, et al. Formation of ultracold polar molecules in the rovibrational ground state. Physical Review Letters, 2008, 101 (13): 133004. |
30 | WEI Q, KAIS S, CHEN Y P. Communications: Entanglement switch for dipole arrays. The Journal of Chemical Physics, 2010, 132 (12): 121104. |
31 | WEI Q, CAO Y D, KAIS S, et al. Quantum computation using arrays of N polar molecules in pendular states . ChemPhysChem, 2016, 17 (22): 3714- 3722. |
32 | NI K-K, ROSENBAND T, GRIMES D D. Dipolar exchange quantum logic gate with polar molecules. Chemical Science, 2018, (33): 6830- 6838. |
33 | WEI Q, KAIS S, FRIEDRICH B, et al. Entanglement of polar symmetric top molecules as candidate qubits. The Journal of Chemical Physics, 2011, 135 (15): 154102. |
34 | LIAO Y-Y. Bell states and entanglement of two-dimensional polar molecules in electric fields [J]. The European Physical Journal D, 2017, 71: Article number 277. |
35 | ZHANG Z Y, LIU J M. Quantum correlations and coherence of polar symmetric top molecules in pendular states. Scientific Reports, 2017, 7, 17822. |
36 | SCHRÖDINGER E. The present status of quantum mechanics [J]. Die Naturwissenschaften, 1935, 23(48). https://homepages.dias.ie/dorlas/Papers/QMSTATUS.pdf. |
37 | WILK T, WEBSTER S C, KUHN A, et al. Single-atom single-photon quantum interface. Science, 2007, 317, 488- 490. |
38 | NEUMANN P, MIZUOCHI N, REMPP F, et al. Multipartite entanglement among single spins in diamond. Science, 2008, 320, 1326- 1329. |
39 | SHULMAN M D, DIAL O E, HARVEY S P, et al. Demonstration of entanglement of electrostatically coupled singlet-triplet qubits. Science, 2012, 336, 202- 205. |
40 | WEBER B, SPECHT H P, MÜLLER T, et al. Photon-photon entanglement with a single trapped atom. Physical Review Letters, 2009, 102 (3): 030501. |
41 | VEDRAL V, PLENIO M B, RIPPIN M A, et al. Quantifying entanglement. Physical Review Letters, 1997, 78 (12): 2275- 2279. |
42 | BENNETT C H, DIVINCENZO D P, SMOLIN J A, et al. Mixed-state entanglement and quantum error correction. Physical Review A, 1996, 54 (5): 3824- 3851. |
43 | WOOTTERS W K. Entanglement of formation of an arbitrary state of two qubits. Physical Review Letters, 1998, 80 (10): 2245- 2248. |
44 | HILL S A, WOOTTERS W K. Entanglement of a pair of quantum bits. Physical Review Letters, 1997, 78 (26): 5022- 5025. |
45 | VIDAL G, WERNER R F. Computable measure of entanglement. Physical Review A, 2002, 65 (3): 032314. |
46 | VEDRAL V. The role of relative entropy in quantum information theory. Reviews of Modern Physics, 2002, 74 (1): 197- 234. |
47 | MEYER D A, WALLACH N R. Global entanglement in multiparticle systems. Journal of Mathematical Physics, 2002, 43 (9): 4273- 4278. |
48 | BRENNEN G K. An observable measure of entanglement for pure states of multi-qubit systems. Quantum Information and Computation, 2003, 3 (6): 619- 626. |
[1] | LI Jin-fang;ZHANG Zhi-jun;MA Lei. Preparation of Entangled Squeezed Coherent States(Chinese) [J]. Journal of East China Normal University(Natural Sc, 2005, 2005(5/6): 143-146. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||