Journal of East China Normal University(Natural Science) >
Dirac and Majorana neutrino scattering by cosmic torsion in spatial-flat FRW spacetime background
Received date: 2023-05-03
Online published: 2024-05-25
The possibility of detecting cosmic torsion originated from large scale Lorentz violation of cosmology at cosmic scale by the shift of energy distribution for massive cosmic neutrinos in spatial-flat FRW (Friedmann-Robertson-Walker) spacetime background is discussed. Massive cosmic neutrino scattering owing to cosmic torsion leads to a shift in the peak position of their final state energy distribution at the order of
Key words: cosmic torsion detection; neutrino; expanding universe
Wei LIN , Xun XUE . Dirac and Majorana neutrino scattering by cosmic torsion in spatial-flat FRW spacetime background[J]. Journal of East China Normal University(Natural Science), 2024 , 2024(3) : 1 -11 . DOI: 10.3969/j.issn.1000-5641.2024.03.001
1 | FILIPPENKO A V, RIESS A G.. Results from the high-z supernova search team. Physics Reports, 1998, 307 (1/2/3/4): 31- 44. |
2 | RIESS A G, FILIPPENKO A V, CHALLIS P, et al.. Observational evidence from supernovae for an accelerating universe and a cosmological constant. The Astronomical Journal, 1998, 116 (3): 1009- 1038. |
3 | PERLMUTTER S, ALDERING G, GOLDHABER G, et al.. Measurements of $ \Omega $ and $ \Lambda $ from 42 high-redshift supernovae. The Astrophysical Journal, 1999, 517 (2): 565- 586. |
4 | HAMILTON J C. What have we learned from observational cosmology? [J]. Studies in History and Philosophy of Science Part B, 2014, 46: 70-85. |
5 | MAGGIORE M. A Modern Introduction to Quantum Field Theory [M]. New York: Oxford University Press, 2004. |
6 | AGRAWAL P, OBIED G, STEINHARDT P J, et al. On the cosmological implications of the string swampland [J]. Physics Letters B, 2018, 784: 271-276. |
7 | OBIED G, OOGURI H, SPODYNEIKO L, et al. De sitter space and the swampland [EB/OL]. (2018-07-17)[2023-04-03]. https://arxiv.org/abs/1806.08362. |
8 | WILL C M. Was Einstein right? [J]. Annalen der Physik, 2006, 518(1/2): 19-33. |
9 | ASMODELLE E. Tests of general relativity: A review [D]. Preston, Lancashire, UK: University of Central Lancashire, 2017. |
10 | CRISPINO L C B, KENNEFICK D. 100 years of the first experimental test of general relativity [J]. Nature Physics, 2019, 15: 416-419. |
11 | DI VALENTINO E, MELCHIORRI A, SILK J. Planck evidence for a closed Universe and a possible crisis for cosmology [J]. Nature Astronomy, 2019, 4(2): 196-203. |
12 | DI VALENTINO E, MELCHIORRI A, SILK J. Investigating cosmic discordance [J]. The Astrophysical Journal Letters, 2021, 908(1): L9. |
13 | 吴奕暐, 薛迅. SIM(2)引力规范理论 [J]. 华东师范大学学报 (自然科学版), 2016(3): 76-83. |
14 | WU Y W, XUE X, YANG L X, et al. The effective gravitational theory at large scale with Lorentz violation [EB/OL]. (2015-10-18)[2023-04-03]. https://arxiv.org/abs/1510.00814. |
15 | YANG L X, WU Y W, WEI W Y, et al.. The effective gravitation theory at large scale with Lorentz violation. Chinese Science Bulletin, 2017, 62 (9): 944- 950. |
16 | 魏文叶, 申佳音, 吴奕暐, 等. 大尺度有效引力的E(2) 规范理论模型 [J]. 物理学报, 2017, 66(13): 130301. |
17 | SHEN J Y, XUE X. Large scale Lorentz violation gravity and dark energy [C]// WANG W, XING Z Z. Proceedings of the 28th International Symposium on Lepton Photon Interactions at High Energies (Lepton Photon 2017). Singapore: World Scientific Publishing Co. Pte. Ltd, 2020: 459-475. |
18 | ZHAI H Y, SHEN J Y, XUE X. Uplifting of AdS type to quintessence-like potential induced by frozen large-scale Lorentz violation [J]. Chinese Physics C, 2020, 44(8): 085101. |
19 | LI Q, LI J, ZHOU Y X, et al. The effective potential originating from swampland and the non-trivial Brans-Dicke coupling [J]. Chinese Physics C, 2020, 44(10): 105108. |
20 | ZHANG H C, XU L X. Inflation in the parity-conserving Poincaré gauge cosmology [J]. Journal of Cosmology and Astroparticle Physics, 2020(10): 003. |
21 | ZHANG H C, XU L X. Late-time acceleration and inflation in a Poincaré gauge cosmological model [J]. Journal of Cosmology and Astroparticle Physics, 2019(9): 050. |
22 | ALDROVANDI R, PEREIRA J G. Teleparallel Gravity: An Introduction [M]. Berlin: Springer, 2013. |
23 | SHAPIRO I L. Torsion: Theory and possible observables [EB/OL]. (1998-11-09)[2023-04-03]. https://arxiv.org/abs/hep-th/9811072. |
24 | SHAPIRO I L.. Physical aspects of the space–time torsion. Physics Reports, 2002, 357 (2): 113- 213. |
25 | BUCHBINDER I, SHAPIRO I. On the renormalization of models of quantum field theory in an external gravitational field with torsion [J]. Physics Letters B, 1985, 151(3): 263-266. |
26 | YASSKIN P B, STOEGER W R. Propagation equations for test bodies with spin and rotation in theories of gravity with torsion [J]. Physical Review D, 1980, 21: 2081-2094. |
27 | HEHL F W, OBUKHOV Y N, PUETZFELD D. On Poincaré gauge theory of gravity, its equations of motion, and Gravity Probe B [J]. Physics Letters A, 2013, 377(31): 1775-1781. |
28 | TRUKHANOVA M, OBUKHOV Y N. Quantum hydrodynamics of spinning particles in electromagnetic and torsion fields [J]. Universe, 2021, 7(12): 498. |
29 | TSAMPARLIS M.. Cosmological principle and torsion. Physics Letters A, 1979, 75 (1/2): 27- 28. |
30 | MANDL F, SHAW G. Quantum Field Theory [M]. 2nd ed. New York: John Wiley and Sons, 2010. |
31 | COLLAS P, KLEIN D. The Dirac Equation in Curved Spacetime: A Guide for Calculations [M]. Berlin: Springer , 2019. |
32 | PARKER L. Quantized fields and particle creation in expanding universes. Ⅱ [J]. Physical Review D, 1971, 3(2): 346-356. |
33 | PARKER L E, TOMS D J. Quantum Field Theory in Curved Spacetime: Quantized Fields and Gravity [M]. New York: Cambridge University Press, 2009. |
34 | OLIVE K. Review of particle physics [J]. Chinese Physics C, 2014, 38(9): 090001. |
35 | OBERAUER L, IANNI A, SERENELLI A. Solar Neutrino Physics: The Interplay between Particle Physics and Astronomy [M]. [S.l]: John Wiley & Sons, Inc., 2020. |
36 | SREDNICKI M. Quantum Field Theory [M]. New York: Cambridge University Press, 2007. |
37 | MANGANO G, MIELE G, PASTOR S, et al. Updated BBN bounds on the cosmological lepton asymmetry for non-zero $ \theta_{13} $ [J]. Physics Letters B, 2012, 708(1/2): 1-5. |
38 | OLDENGOTT I M, SCHWARZ D J. Improved constraints on lepton asymmetry from the cosmic microwave background [J]. Europhysics Letters, 2017, 119(2): 29001. |
39 | WEINBERG S. Cosmology [M]. New York: Oxford University Press, 2008. |
40 | The Katrin Collaboration. Direct neutrino-mass measurement with sub-electronvolt sensitivity [J]. Nature Physics, 2022, 18(2): 160-166. |
/
〈 |
|
〉 |