1 |
FILIPPENKO A V, RIESS A G.. Results from the high-z supernova search team. Physics Reports, 1998, 307 (1/2/3/4): 31- 44.
|
2 |
RIESS A G, FILIPPENKO A V, CHALLIS P, et al.. Observational evidence from supernovae for an accelerating universe and a cosmological constant. The Astronomical Journal, 1998, 116 (3): 1009- 1038.
|
3 |
PERLMUTTER S, ALDERING G, GOLDHABER G, et al.. Measurements of $ \Omega $ and $ \Lambda $ from 42 high-redshift supernovae. The Astrophysical Journal, 1999, 517 (2): 565- 586.
|
4 |
HAMILTON J C. What have we learned from observational cosmology? [J]. Studies in History and Philosophy of Science Part B, 2014, 46: 70-85.
|
5 |
MAGGIORE M. A Modern Introduction to Quantum Field Theory [M]. New York: Oxford University Press, 2004.
|
6 |
AGRAWAL P, OBIED G, STEINHARDT P J, et al. On the cosmological implications of the string swampland [J]. Physics Letters B, 2018, 784: 271-276.
|
7 |
OBIED G, OOGURI H, SPODYNEIKO L, et al. De sitter space and the swampland [EB/OL]. (2018-07-17)[2023-04-03]. https://arxiv.org/abs/1806.08362.
|
8 |
WILL C M. Was Einstein right? [J]. Annalen der Physik, 2006, 518(1/2): 19-33.
|
9 |
ASMODELLE E. Tests of general relativity: A review [D]. Preston, Lancashire, UK: University of Central Lancashire, 2017.
|
10 |
CRISPINO L C B, KENNEFICK D. 100 years of the first experimental test of general relativity [J]. Nature Physics, 2019, 15: 416-419.
|
11 |
DI VALENTINO E, MELCHIORRI A, SILK J. Planck evidence for a closed Universe and a possible crisis for cosmology [J]. Nature Astronomy, 2019, 4(2): 196-203.
|
12 |
DI VALENTINO E, MELCHIORRI A, SILK J. Investigating cosmic discordance [J]. The Astrophysical Journal Letters, 2021, 908(1): L9.
|
13 |
吴奕暐, 薛迅. SIM(2)引力规范理论 [J]. 华东师范大学学报 (自然科学版), 2016(3): 76-83.
|
14 |
WU Y W, XUE X, YANG L X, et al. The effective gravitational theory at large scale with Lorentz violation [EB/OL]. (2015-10-18)[2023-04-03]. https://arxiv.org/abs/1510.00814.
|
15 |
YANG L X, WU Y W, WEI W Y, et al.. The effective gravitation theory at large scale with Lorentz violation. Chinese Science Bulletin, 2017, 62 (9): 944- 950.
|
16 |
魏文叶, 申佳音, 吴奕暐, 等. 大尺度有效引力的E(2) 规范理论模型 [J]. 物理学报, 2017, 66(13): 130301.
|
17 |
SHEN J Y, XUE X. Large scale Lorentz violation gravity and dark energy [C]// WANG W, XING Z Z. Proceedings of the 28th International Symposium on Lepton Photon Interactions at High Energies (Lepton Photon 2017). Singapore: World Scientific Publishing Co. Pte. Ltd, 2020: 459-475.
|
18 |
ZHAI H Y, SHEN J Y, XUE X. Uplifting of AdS type to quintessence-like potential induced by frozen large-scale Lorentz violation [J]. Chinese Physics C, 2020, 44(8): 085101.
|
19 |
LI Q, LI J, ZHOU Y X, et al. The effective potential originating from swampland and the non-trivial Brans-Dicke coupling [J]. Chinese Physics C, 2020, 44(10): 105108.
|
20 |
ZHANG H C, XU L X. Inflation in the parity-conserving Poincaré gauge cosmology [J]. Journal of Cosmology and Astroparticle Physics, 2020(10): 003.
|
21 |
ZHANG H C, XU L X. Late-time acceleration and inflation in a Poincaré gauge cosmological model [J]. Journal of Cosmology and Astroparticle Physics, 2019(9): 050.
|
22 |
ALDROVANDI R, PEREIRA J G. Teleparallel Gravity: An Introduction [M]. Berlin: Springer, 2013.
|
23 |
SHAPIRO I L. Torsion: Theory and possible observables [EB/OL]. (1998-11-09)[2023-04-03]. https://arxiv.org/abs/hep-th/9811072.
|
24 |
SHAPIRO I L.. Physical aspects of the space–time torsion. Physics Reports, 2002, 357 (2): 113- 213.
|
25 |
BUCHBINDER I, SHAPIRO I. On the renormalization of models of quantum field theory in an external gravitational field with torsion [J]. Physics Letters B, 1985, 151(3): 263-266.
|
26 |
YASSKIN P B, STOEGER W R. Propagation equations for test bodies with spin and rotation in theories of gravity with torsion [J]. Physical Review D, 1980, 21: 2081-2094.
|
27 |
HEHL F W, OBUKHOV Y N, PUETZFELD D. On Poincaré gauge theory of gravity, its equations of motion, and Gravity Probe B [J]. Physics Letters A, 2013, 377(31): 1775-1781.
|
28 |
TRUKHANOVA M, OBUKHOV Y N. Quantum hydrodynamics of spinning particles in electromagnetic and torsion fields [J]. Universe, 2021, 7(12): 498.
|
29 |
TSAMPARLIS M.. Cosmological principle and torsion. Physics Letters A, 1979, 75 (1/2): 27- 28.
|
30 |
MANDL F, SHAW G. Quantum Field Theory [M]. 2nd ed. New York: John Wiley and Sons, 2010.
|
31 |
COLLAS P, KLEIN D. The Dirac Equation in Curved Spacetime: A Guide for Calculations [M]. Berlin: Springer , 2019.
|
32 |
PARKER L. Quantized fields and particle creation in expanding universes. Ⅱ [J]. Physical Review D, 1971, 3(2): 346-356.
|
33 |
PARKER L E, TOMS D J. Quantum Field Theory in Curved Spacetime: Quantized Fields and Gravity [M]. New York: Cambridge University Press, 2009.
|
34 |
OLIVE K. Review of particle physics [J]. Chinese Physics C, 2014, 38(9): 090001.
|
35 |
OBERAUER L, IANNI A, SERENELLI A. Solar Neutrino Physics: The Interplay between Particle Physics and Astronomy [M]. [S.l]: John Wiley & Sons, Inc., 2020.
|
36 |
SREDNICKI M. Quantum Field Theory [M]. New York: Cambridge University Press, 2007.
|
37 |
MANGANO G, MIELE G, PASTOR S, et al. Updated BBN bounds on the cosmological lepton asymmetry for non-zero $ \theta_{13} $ [J]. Physics Letters B, 2012, 708(1/2): 1-5.
|
38 |
OLDENGOTT I M, SCHWARZ D J. Improved constraints on lepton asymmetry from the cosmic microwave background [J]. Europhysics Letters, 2017, 119(2): 29001.
|
39 |
WEINBERG S. Cosmology [M]. New York: Oxford University Press, 2008.
|
40 |
The Katrin Collaboration. Direct neutrino-mass measurement with sub-electronvolt sensitivity [J]. Nature Physics, 2022, 18(2): 160-166.
|